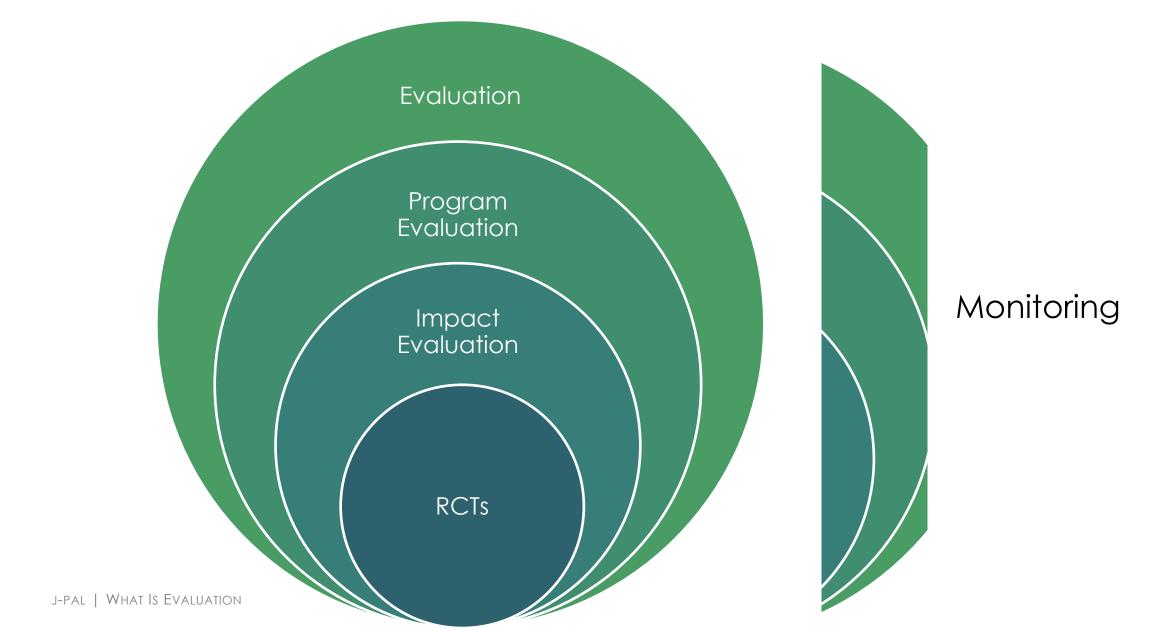


What is (Impact) Evaluation? Why Evaluate?

J-PAL



I. What is Evaluation?

II. Components of Program Evaluation

What is Evaluation?

Which one of these would make a good question for an impact evaluation?

- A. Does nutrition education for pregnant women increase newborns' weight?
- B. Do pregnant women have a right to sufficient food?
- C. Are trainers spreading misinformation when delivering nutrition education?

Impact evaluation should usually be conducted:

- A. Externally and independent from the implementers of the program being evaluated
- B. Externally and closely integrated with program implementers
- C. Internally
- D. Don't know

I. What is Evaluation?

II. Components of Program Evaluation

Components of Program Evaluation

Needs Assessment Theory of Change **Process Evaluation** Impact Evaluation Cost Effectiveness Analysis

An Example

WATER, SANITATION & HEALTH in a low-income country

What is the best solution for reducing diarrheal disease?

- A. Water source infrastructure
- B. Supply & subsidization of purification methods (e.g. chlorine, clay filters, stoves to boil water)
- C. Education on sanitation
- D. Sanitation infrastructure (e.g. latrines)
- E. Idon't know / Other

Identifying the Problem

NEEDS ASSESSMENT

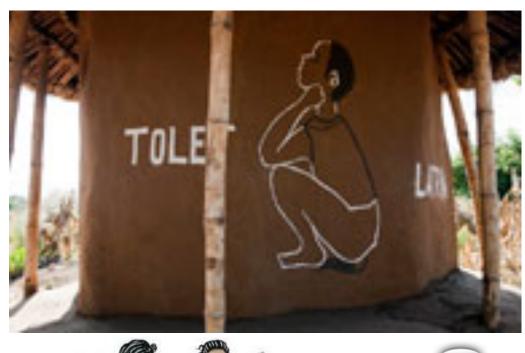
Questions answered by a Needs Assessment

- Does the problem we are proposing to solve actually exist?
 - What is the likely source of the problem?
 - What is the extent of the problem?
 - Who is in most need?
- What solutions have been proposed or tried before?
 - Did they work? Why & how?
 - Are they feasible in this context?

Needs Assessment

- Does the problem exist?
 - Diarrheal disease killed approximately 2.6 million people per year between 1990 and 2000
 - 20% of all child deaths (under 5 years old) are from diarrhea

.....what is the likely source?


Really the source of the problem?

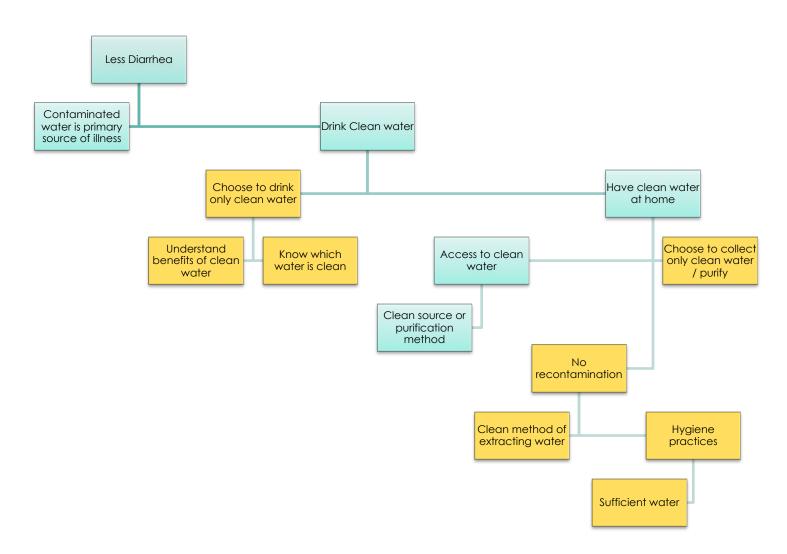
- Water quality helps little without hygiene (Esrey, 1996)
 - 2.3 billion people lack basic sanitation facilities (WHO)
- People are more willing to pay for convenient water than clean water

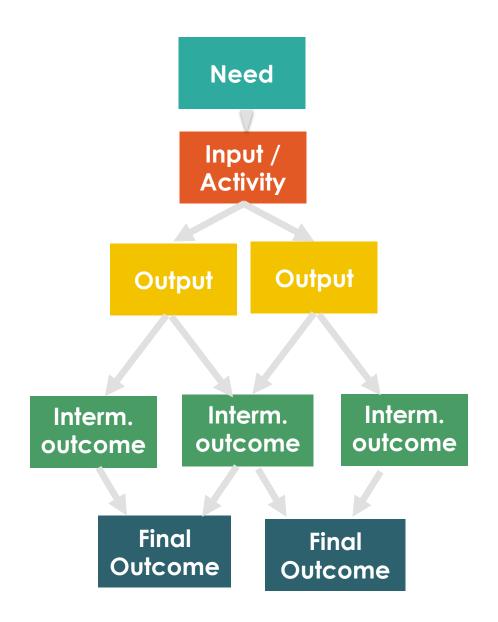
- Chlorine is very cheap...
 - In Zambia, \$0.18 per month for a family of six
 - In Kenya, \$0.30 per month
- but less than 10% of households purchase treatment

Kremer, Michael, Amrita Ahuja and Alex Peterson Zwane. "Providing Safe Water: Evidence from Randomized Evaluations" Discussion Paper 2010--23, Cambridge, Mass.: Harvard Environmental Economics Program, September, 2010.

Potential Solutions

Blueprint for Change


THEORY OF CHANGE



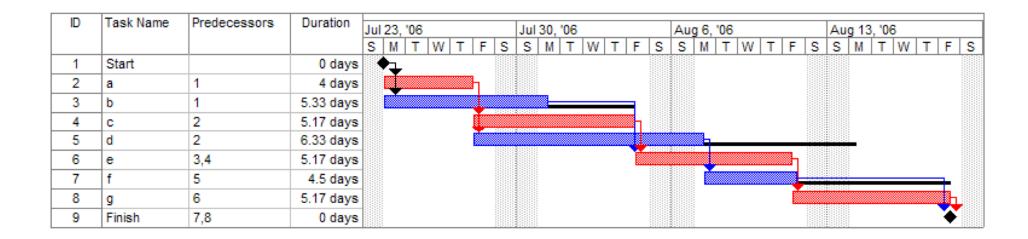
Questions answered by a Theory of Change

- What are the underlying reasons for the current conditions? What is currently lacking?
- How will the program address these needs?
- What are immediate inputs or activities of the program?
- How do these inputs feed into the ultimate goals of the program?

Theory of Change

Log Frame

	Objectives Hierarchy	Indicators	Sources of Verification	Assumptions / Threats
Final Outcome	Lower rates of diarrhea	Rates of diarrhea	Household survey	Waterborne disease is primary cause of diarrhea
Intermediate Outcome	Households drink cleaner water	(∆ in) drinking water source; E. coli CFU/100ml	Household survey, water quality test at home storage	Households collect clean water. No recontamination
Output	Source water is cleaner	E. coli CFU/100ml	Water quality test at source	Knowledge of maintenance. Continued maintenance of water source.
Input (Intervention/ Activity)	Source protection is built	Protection is present, functional	Source visits/ surveys	Sufficient materials, funding, & labor


Making the program work

PROCESS EVALUATION

Questions answered by a Process Evaluation

- Was the program carried out as planned?
 - Are basic tasks being completed?
 - Is the intervention reaching the target population?
 - Is the intervention being completed well or efficiently and to the beneficiaries' satisfaction?

Process Evaluation

Inputs:

- Springs for encasement identified
- Encasements for springs were built
- Impact evaluation rollout proceeding as planned
- Maintenance was performed

Outputs:

66% reduction in source water e coli concentration

Measuring how well it worked

IMPACT EVALUATION

Questions answered by an Impact Evaluation

- Did the program impact the problem / outcome?
 - Did concrete encasing of the springs impact diarrhea rates?
- If so, how much impact did the program have?
 - How much did diarrhea rates decrease?

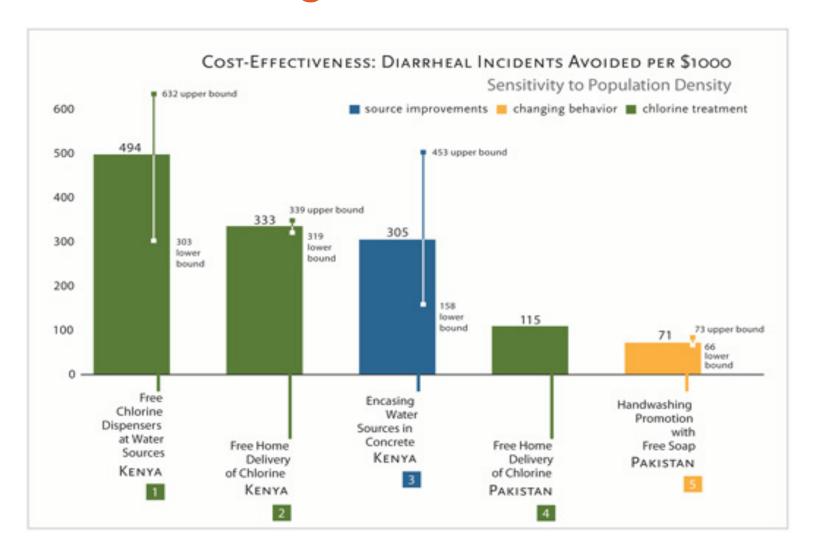
What was the impact?

- Intermediate outcome:
 - 24% reduction in household E coli concentration
- Outcomes:
 - 25% reduction in incidence of diarrhea

Making Policy from Evidence

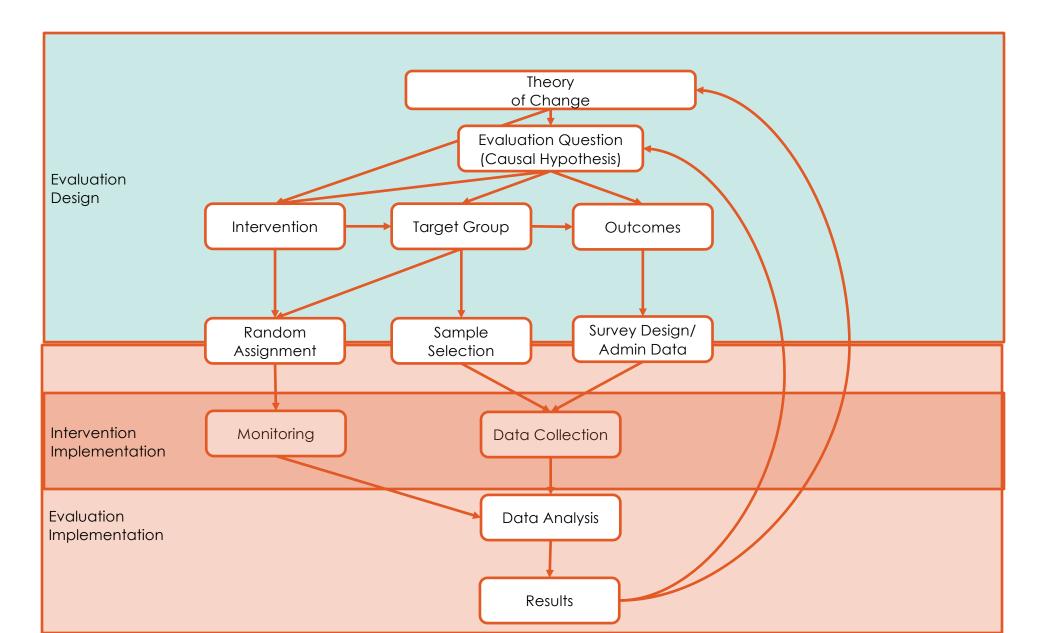
Intervention	Impact on Diarrhea
	25% reduction in diarrhea incidence for ages 0-3

Making Policy from Evidence


Intervention	Impact on Diarrhea	
Spring protection (Kenya)	25% reduction in diarrhea incidence for ages 0-3	
Source chlorine dispensers (Kenya)	20-40% reduction in diarrhea	
Home chlorine distribution (Kenya)	20-40% reduction in diarrhea	
Hand-washing (Pakistan)	53% drop in diarrhea incidence for children under 15 years old	
Piped water (Urban Morocco)	0.27 fewer days of diarrhea per child per week	

Evidence-Based Policymaking

COST-EFFECTIVENESS ANALYSIS


Cost-Effectiveness Diagram

What is the best solution for reducing diarrheal disease?

- A. Water source infrastructure
- B. Supply & subsidization of purification methods (e.g. chlorine, clay filters, stoves to boil water)
- C. Education on sanitation
- D. Sanitation infrastructure (e.g. latrines)
- E. Idon't know / Other

Running Randomized Evaluations

J-PAL Executive Education Course: Evaluating Social Programs, June 10 – 14, 2019; E62-262 (MIT Sloan)

	Monday June 10	Tuesday June 11	Wednesday June 12	Thursday June 13	Friday June 14
8:00 – 9:00	Registration/Breakfast	Breakfast	Breakfast	Breakfast	Breakfast
9:00 – 9:40	Opening remarks Mary Ann Bates	Lecture 3: Why Randomize Dan Levy	Lecture 5: Sampling & Sample Size Anja Sautmann	Lecture 6: Threats and Analysis Maggie McConnell	Lecture 8: Generalizability Mary Ann Bates
9:40 – 10:30	Lecture 1: What is Evaluation Maya Duru	Burtevy	Airja saoimanii	Maggie McConneil	Mary Arm Bares
10:30 – 10:45	Coffee Break	Coffee Break & Group Photo		Coffee Break	Coffee Break
10:45 – 11:00	Group introductions Group Case Study 1:	Group work on presentation:		Group work on presentation:	Feedback survey Post Test
11:00 – 12:00	Measurement Decision on group project	Indicators	Group Case Study 4: Threats & Analysis	Threats and Analysis	Group presentations
12:00 – 1:00	Lunch	Lunch	Lunch	Lunch	Lunch
1:00 - 2:30	Lecture 2: Measurement: Outcomes, Impact, and Indicators Vincent Pons	Lecture 4: How to Randomize Joseph Doyle	The RCT Experience from a Practitioner's Perspective Antonio Gutierrez Saga Innovations	Lecture 7: Start-to-Finish Dan Keniston	
2:30 – 2:45	Coffee Break	Coffee Break	Coffee Break	Coffee Break	Group presentations
2:45 – 4:00	Group work on presentation: Theory of change, research question	Group Exercise: Randomization Mechanics	Group Exercise: How to do Power Calculations	Group work on presentation:	presentations
4:00 – 5:00	Group Case Study 2: Why Randomize	Group Case Study 3: How to Randomize	Group work on presentation: Randomization Design, Power and sample size	Finalize presentation Closing remarks	
5:00 - 8:00	Happy Hour Glass House				

References, Reuse, and Citation

J-PAL, 2019

This case study is made available under a Creative Commons Attribution 4.0 License (international): https://creativecommons.org/licenses/by/4.0/