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Abstract

Groundwater is a vital input to agricultural production worldwide, but a widespread
lack of effective regulation leads to overconsumption and depletion. We evaluate a
program of price incentives for voluntary groundwater conservation among small-
holder farmers in Gujarat, India, where water (and the electricity used to pump it)
is scarce and unregulated. To do so, we install meters and offer payments for re-
duced groundwater pumping in a randomized controlled trial. Price incentives work:
The program reduced hours of irrigation by 24 percent. Most of the conservation is
achieved by a price within a realistic policy range; doubling the price has little ad-
ditional effect. Payment expenditures per unit energy conserved are near the cost of
expanding electricity supply, suggesting that payments for groundwater conservation
may be a cost-effective policy tool where pricing is politically infeasible.
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1 Introduction

Groundwater is a major source of irrigation and drinking water worldwide, especially
for farmers in low- and middle-income countries (Ministry of Agriculture of the Gov-
ernment of India, 2014). But in many parts of the world, a lack of regulation is leading
to overconsumption and depletion, which can increase poverty and conflict and reduce
farm income, wealth, and employment (Sekhri, 2014; Blakeslee et al., 2020). In addition,
electricity used to pump groundwater is often typically not priced volumetrically, exacer-
bating depletion while draining revenue from electric utilities and disincentivizing grid
expansion (Burgess et al., 2020). Many regulatory tools are available to address this text-
book common-pool resource problem, ranging from quantity restrictions and tradeable
quotas to simple price instruments. Despite this, groundwater pumping is currently un-
regulated in much of the world, suggesting that a new approach could be helpful.

This paper experimentally evaluates a program of payments for voluntary ground-
water conservation among smallholder farmers in Gujarat, India, where both water and
electricity are scarce and largely unregulated. Between Fall 2022 and Spring 2023, we in-
stalled meters and offered payments for reduced groundwater pumping in a randomized
controlled trial. The basic design is to (1) meter the groundwater pumps of all study par-
ticipants, (2) offer randomly selected participants payments for reduced pumping relative
to a “benchmark” quantity, and (3) compare groundwater consumption by these farmers
to that of the rest of the sample. The program was implemented in collaboration with the
Aga Khan Rural Support Programme (India), a trusted organization with a long history
in the study area.

We first ask how this program affected groundwater and electricity consumption,
studying conservation payments as a potential policy tool in itself. For other natural
resources worldwide, it is common for governments to offer payments for conservation
instead of penalties for using them. For groundwater in developing countries, conserva-
tion payments may be able to overcome typical political constraints to pricing water or
electricity. High energy subsidies are often seen as valuable means of redistribution; in
India, reform efforts are commonly met with forceful protests (Sovacool, 2017). Conser-
vation payments instead invert the distributional consequences of Pigouvian fees.

We then use the experimental variation introduced by this program to estimate the
price elasticity of demand for groundwater irrigation in smallholder agriculture. Treatment-
group farmers were randomized into high- and low-price groups, providing additional
variation to trace out the demand curve. While the overall treatment effects depend on
specific design parameters of our program, a demand model yields potentially more gen-
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eralizable information. The demand for groundwater is an important input to the design
of any type of groundwater or rural electricity regulation, but evidence has been scarce.
Our project provides two crucial missing ingredients: price variation, and direct measure-
ment of pump operation.

First, we find that payments for groundwater conservation work. Farmers offered
conservation payments irrigated for 24 percent fewer hours than farmers assigned to the
control group, with a 95 percent confidence interval of (13, 34) percent. The effects are
similar when we convert irrigation time to energy use—we estimate that treatment farm-
ers reduced electricity consumption by 151 kilowatt-hours (kWh) per month relative to
the control-group mean of 611 kWh. Treatment effects increased over the three months of
the intervention, suggesting a durable response. Higher prices do not have much addi-
tional effect conditional on overall program eligibility.

Second, we estimate demand for groundwater irrigation using the full range of price
variation in our experiment. To do so, we use assignment to the treatment group and
sub-treatment groups as instruments for the actual price faced by each participant at the
margin. In a conservation payments program, not all participants are truly marginal—
some participants find their benchmark too low to affect their decisions, while others
exceed the maximum payment. We find that irrigation hours fall by 1 hour per farmer-
month for every 5 INR increase in the hourly price, implying a price elasticity of 0.2.

Last, we assess the cost-effectiveness of payments for groundwater conservation from
the perspective of an electric utility. At the margin, is it cheaper for a utility to increase
supply or to reduce demand through conservation payments? We find that our program
is cost-competitive with typical costs of electricity procurement in northwestern India.
Our program spent 6.1 INR in total conservation payments for every kWh of energy
saved, a cost that is slightly greater than the average costs of electricity provision for
the utility in our study area (and may be lower than marginal costs) and slightly lower
than costs in a nearby state. Considering the additional social costs of groundwater deple-
tion and of emissions from electricity generation, it appears likely that paying farmers to
reduce their groundwater irrigation would bring greater social benefits than purchasing
more electricity and distributing it for free.

The central contribution of this paper is to provide experimental evidence on the re-
sponse to marginal prices for groundwater irrigation. Because price variation is scarce
for an open-access resource, many early studies used proxies for the cost of pumping
(Gonzalez-Alvarez et al., 2006; Hendricks and Peterson, 2012). Several observational
studies find evidence that marginal prices reduce groundwater use, in both the U.S.
(Smith et al., 2017; Bruno and Jessoe, 2021) and in South Asia (Meenakshi et al., 2013;
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Chakravorty et al., 2023). However, studies in developing countries often rely on self-
reported pumping data or proxies for water use, which may be unreliable or noisy; in-
stalling meters allows us to directly measure irrigation behavior. Chakravorty et al.
(2023) use an encouragement design to experimentally induce a volumetric price; they
do not find effects on water use, but this may be because relatively few farmers adopted
the price. We build most directly upon two papers that found mixed results in non-
randomized pilots of similar programs by electric utilities in Gujarat and Punjab (Fish-
man et al., 2016; Mitra et al., 2023). By working instead with a local non-governmental
organization, we are able to randomize participants, directly measure pumping at the in-
dividual level, and trace the demand curve to prices well beyond what utilities have been
willing to test.

Our project also contributes to the broader literature on payments for environmental
services (PES). Our intervention has the same basic structure as hundreds of programs
designed to incentivize the provision of environmental services, ranging from increased
forest or wetland cover, to reduced input intensity in agriculture.1 Despite their preva-
lence, rigorous evaluation of these types of programs has been limited (see Pattanayak
et al. (2010) and Börner et al. (2017) for reviews). Most existing evaluations use covariate
matching and are unable to address selection bias, a particular concern for a voluntary
program. The exceptions are three randomized controlled trials of programs to reduce
deforestation in Uganda (Jayachandran et al., 2017), encourage tree planting in Malawi
(Jack and Cardona Santos, 2017), and reduce crop burning in India (Jack et al., 2023). Our
study shows that PES models are feasible and can be effective in a novel context: reducing
energy and water use in agriculture.

Finally, we contribute to literature connecting the price response of electricity con-
sumption in developing countries to policy decisions about energy-sector investment and
reform. Experimental and quasi-experimental studies are still limited, but a few have
been conducted recently on rural households in Columbia (McRae, 2015), urban house-
holds in South Africa (Jack and Smith, 2016), and new grid connections in Kenya (Lee
et al., 2018).

1For example, in the United States alone, payments are available to farmers for actions to mitigate flood
and wildfire risks, provide habitat for endangered species, salinity mitigation, and water and energy con-
servation.
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2 Study Setting and Experimental Design

2.1 Enrollment and Sample

We implemented a randomized controlled trial among groundwater-irrigating farmers in
Saurashtra, a water-scarce region of Gujarat state, India. The study villages are located
in the inland districts of Rajkot, Surendranagar, and Morbi (shown in Figure 1). Ground-
water depletion is a concern within the study area, and nearby areas are marked by some
of the most rapid groundwater depletion rates both within India and globally (Jasechko
et al., 2024). While the primary source of employment in the study area is in agriculture
(Registrar General and Census Commissioner of India (2001)), there are also a number of
industrial occupation opportunities.

We recruited our sample using lists of villagers currently or formerly participating in
agricultural outreach programs with our implementing partner, the Aga Khan Rural Sup-
port Program (AKRSP), and its sister agency the Aga Khan Foundation (AKF). The out-
reach programs included Better Cotton Initiative, which aims to improve the sustainabil-
ity of the global cotton supply; Farmer Producer Groups, which aim to empower farmers
in marketing produce and procuring high-quality inputs; and various micro-irrigation
subsidy and support programs. Surveyors approached farmers on these lists, as well as
any farmers who shared water with those on the lists, to determine eligibility.

In order to be eligible for the study, the household’s primary agricultural decision-
maker (PAD) was required to meet the following criteria: Planted crops and irrigated
primarily using groundwater in the previous Rabi season; planned to irrigate during
the coming Rabi season; had no more than two active wells on their primary farm; had
electric-powered pumps on all active wells; did not have multiple pump starters in use
on any active well; and did not belong to a network of sharing irrigation sources among
groups of farmers larger than four.

We enrolled a total of 1,347 farmers who met the eligibility criteria, completed a base-
line survey, and consented to the full study (including installation of an hours of use
meter on the pumpsets used to irrigate their primary farm). Of these, 236 attrited prior to
randomization, and another 122 prior to the final data collection visit, leaving an analysis
sample of 989 farmers.

2.2 Interventions

The experiment had two overarching treatment arms: conservation credit farmers were
eligible to receive payments for conserving groundwater below a benchmark, whereas
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control farmers received no such incentives.

Conservation credits Our study utilizes random variation in whether participants were
assigned to four versions of the Conservation Credits intervention arms, as shown in Fig-
ure 2. Participants in the Conservation Credits arms had an hours-of-use meter installed
on the electric pump starter of their primary irrigation source or sources.2 The meter
measures the total hours of irrigation done by the farmer.

Meters were installed in Fall of 2022, and were read monthly by survey staff from
December 2022 through March 2023 (Figure 3). We took three actions to discourage tam-
pering and removal. First, stickers were placed at the easiest disconnection points such
that disconnection would tear the sticker, enabling easy detection. Second, in the case
that meter removal or tampering was detected, participants were disqualified from re-
ceiving conservation incentives. Finally, participants were rewarded 100 INR per meter
for keeping their meters installed without tampering through the final meter reading.

Farmers in the Conservation Credits arms were informed of their treatment assign-
ment at the first meter reading in December 2022. Farmers were incentivized for con-
serving water for the following four months of the winter growing season, known as the
Rabi season, from January-March. This is the period of peak irrigation; as there is typ-
ically no rainfall during Rabi, agriculture is entirely dependent on irrigation. At each
meter reading, farmers were informed of their benchmark for the following month, and
the payment for the previous month was calculated. Payments were awarded at a fixed
rate for consuming fewer hours of irrigation than the monthly benchmark, according the
formula:

Payment𝑖𝑡 = min
(
max

(
0, price𝑖 × ((hours benchmark)𝑖𝑡 − (hours consumed)𝑖𝑡)

)
, (max payment)𝑖

)
(1)

where price𝑖 is the per-hour incentive rate, (hours benchmark)𝑖𝑡 is an individual-month-
specific benchmark, (hours consumed)𝑖𝑡 is the monthly meter reading, and (max payment)𝑖
is the maximum monthly payment.3 Payments were pro-rated in the case that meter read-
ings were not exactly 31 days apart. The payments were later disbursed via electronic
bank transfer.

2Farmers in our sample had up to two wells on their primary farm, and therefore up to two metered
pump starters.

3The maximum monthly payment was 4,000 INR for farmers with one well and 6,000 INR for farmers
with two wells. These maximums were not pro-rated.
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Conservation Credit Sub-treatments The four Conservation Credits sub-treatments dif-
fer along two dimensions: the per-hour incentive rate, and the benchmark. Individuals
assigned a high price received 100 INR (1.20 USD) per hour conserved, and those assigned
a low price received 50 INR (0.60 USD) per hour conserved. The prices were chosen to en-
compass realistic ranges of groundwater prices that a policymaker might wish to set. The
low price represents the approximate cost of electricity provision for the median farmer
and is similar to the price offered in a program in Punjab (Mitra et al., 2023).4 The high
price allows us to study the response to prices well beyond those piloted by electric utili-
ties in India to date, which might be justified by the additional social costs of groundwater
depletion and electricity generation.

Individualized benchmarks were set using a formula that optimized the expected
number of marginal farmers as a function of first-month pumping data (i.e., after me-
ter installation but before treatment assignment was revealed to surveyors or farmers).
Individuals assigned the high and low benchmark received 115% and 85%, respectively, of
their formula-based benchmark, rounded to the nearest 10-hour increment.

Control Participants in the Control arm also had hours-of-use meters installed and read
monthly for four months, and were rewarded 100 INR per meter for keeping the meters
installed for the duration of the intervention. However, these farmers were not incen-
tivized for conservation.

2.3 Randomization

Randomization was conducted at the level of farmer-sharing group: that is, the set of
farmers who mentioned at the baseline survey that they used any common irrigation
sources. By randomizing at the sharing group level, we minimize the possibility that
conservation credits will spillover to control farmers.

Randomization was stratified by forecasted hours of irrigation and size of water-
sharing group. Specifically, the final sample of water-sharing groups was ordered first by
number of farmers, and second by forecasted hours of irrigation.5 Groups were randomly

4A price of 50 INR per hour is approximately equal to the unsubsidized average cost of electricity sup-
ply in Gujarat for the median pumpset in our sample. That is: (5.4 INR/kWh average cost of electricity
provision in Gujarat) * (5 hp pump brake power) / (40% typical motor efficiency) * (0.75 kW/HP conver-
sion factor) = 50 INR/hr. The Punjab program offered an incentive of 4.0 INR/kWh, which translates to
different per-hour prices for different farmers depending on pump power, but would be approximately 37
INR per hour for the median pumpset in our sample. For more details on this calculation see Section 3.2
and Table 5.

5Forecasted hours of irrigation were created using a random forest using baseline survey data and geo-
logical mapping data. Forecasts were fit using a sample of farmers in Saurashtra from a previous project.
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allocated in equal proportion between the Control and Conservation Credit arms using a
pseudo-random number generator (Stata software) within each ordered pair. Pairs were
then combined into ordered cells of eight farmer-sharing groups, within which the four
groups allocated the Conservation Credit arm were randomly allocated in equal propor-
tion between the four Conservation Credits sub-treatments.

3 Data and Summary Statistics

3.1 Data Sources

Our analysis rests on data from two sources: a baseline survey and meter reading data.
First, we conducted a baseline survey with both self-reported and field measurement
components prior to randomizing participants into treatments. Self-reported data include
demographic and socioeconomic characteristics, such as landholding size and household
size; cropping, crop management, and irrigation decisions in the previous year; the power
of the primary pumpsets; and water conservation strategies and attitudes. Field measure-
ments include the precise geolocation and depth-to-water of each well on the participant’s
largest farm where measurement is safe and feasible. We also collect the names and con-
tact details of any farmers who use water from the primary farm or whose water is used
on the primary farm in order to sort our sample into water-sharing groups consisting of
all farmers who are connected through water sharing relationships. Baseline data was
collected electronically through tablet surveys.

Second, we directly measure groundwater pumping for all study participants using
hours-of-use meters installed on the pump starter of each participant’s primary irrigation
source.6 Surveyors recorded meter readings each month using a digital tablet survey.
Meter data quality was assured through random audits, in which a research associate
compared the digitally recorded meter readings with dated, geo-located photographs of
the meter dial included on the tablet survey.

3.2 Outcome Variables

Our primary outcome variable is monthly hours of groundwater irrigation. Meters show
cumulative duration of pump operation, so we calculate monthly irrigation hours as the
difference between values shown on the meter at the current visit and previous month’s
visit. Because not all meter-reading visits occurred at exact monthly intervals, we rescale

6Analog hours-of-use meters manufactured by Nishant Engineers (model: NE53/6S).
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observed hours to a 31-day rate so that observations are comparable across farmers and
months.

Our secondary outcome variable is energy consumption in irrigation. Energy use is
not observed directly but rather converted from hours of irrigation using known func-
tional relationships from physics. The formula is:

𝐸 =
𝑃𝑏

�𝑚
× 𝑡 (2)

where 𝐸 is energy consumed, 𝑡 is duration of pump operation, 𝑃𝑏 is the power rating
of the pump’s motor (“brake horsepower”), and �𝑚 is the motor efficiency, a unitless
constant between zero and one.7

We collect 𝑡 and 𝑃𝑏 in meter-reading and baseline surveys. Motor efficiency �𝑚 is
difficult to measure accurately and would have required use of electricity meters, with
which many study participants were uncomfortable. Instead, we draw an estimate of
motor efficiency from the literature in the most similar setting we can find: 40 percent
(Mitra et al., 2023).

Note that our energy use variable is not simply a monotone transformation of irriga-
tion hours, since it also depends on pump power, which varies across farmers. That said,
pump power does not endogenously respond to the program,8 so energy use can be seen
as a rescaling of units combined with a reweighting of farmers within the sample. Ei-
ther way, average treatment effects may be substantively different if individual treatment
effects are heterogeneous and correlated with pump power. Similarly, individual-level
price elasticities of demand for energy and hours are equal, but aggregate price elastici-
ties may differ due to this reweighting.

3.3 Descriptive Statistics and Balance Checks

Descriptive statistics. Table 1 reports baseline characteristics of the experimental sam-
ple. In both this table and all subsequent analysis, the sample is restricted to farmers
who completed all rounds of data collection: the baseline survey, meter installation, the
baseline meter reading, and all three meter-reading visits during the intervention.

7To obtain 𝐸 in kilowatt-hours (kWh) when 𝑃𝑏 is measured in horsepower (hp), the formula also requires
the unit conversion of 0.7457 kW per hp.

8In a longer-term incentive program, farmers could make investments in new pumps. Our program
lasted for only one irrigation season, and participants were unable to replace a pump without removing the
meter and becoming disqualified from the program.
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Our sample consists predominantly of smallholder farmers; the mean plot area of their
primary farm is 1.95 hectares.9 Most participants are literate, have completed primary
and secondary education, and identify with a “scheduled caste/scheduled tribe/other
backward caste” designation. Only half own a plow or tractor. Cotton is the primary crop
in our sample, with sorghum/millet, groundnut, and pulses as the next most common
crops. Farmers are at least somewhat diversified in their crops, with a mean count of
distinct crops around 2.

Most participants have only one active well; some have two. Some wells are dug-
wells and others are borewells (tubewells); the most common type of well is a dug-cum-
borewell, in which a borehole is drilled into the bottom or side of a dugwell in order to
access additional pockets of water. The average well is 59 meters deep, but many are
considerably deeper. The most common electric pump installed in each well is rated at 5
horsepower, but some are more powerful.

Many farmers in our sample are already using cultivation practices that conserve wa-
ter. 41 percent use a drip irrigation system, 69 percent use raised beds, and 19 percent
use rotational, strip, or zero tillage. Local water markets are rare in our context: Only
1 percent report having purchased water for irrigation. Farmers sometimes share irriga-
tion sources with neighbors, usually relatives, but water sharing is not a large share of
irrigation in our sample: About 10 percent of pump operation during the previous (2021-
22) irrigation season was directed to irrigation off the primary farm, which includes both
neighbors and secondary farms also held by the respondent.

Balance. Columns 3 and 4 of Table 1 report means of baseline characteristics separately
for the overall treatment and control groups. The two groups appear similar across all
characteristics. We formally check for balance test between the main treatment and con-
trol groups using a Wald F-test for joint orthogonality of all characteristics reported in
this table. The F-statistic is small and the p-value is large, so we fail to reject the null
hypothesis that treatment-control differences are zero for all characteristics.

Our sample includes more farmers in the treatment group than in the control group,
implying that attrition rates were different across the two groups. Differential attrition
would bias the results if attrition is correlated with characteristics that predict the out-
come variable. But we do not see evidence that the treatment and control groups are
differentially selected across a range of baseline characteristics.

9The Indian government typically defines farmers holding less than 2 hectares as “small and marginal
farmers”.
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4 Program evaluation

We first evaluate our conservation payments program as implemented, by estimating
intent-to-treat (ITT) effects of eligibility for the overall intervention. We estimate OLS
regressions of the following form:

𝑌𝑖𝑡 = 𝛼𝑡 + 𝜏 · ConservationCredits𝑖 + 𝛾′X𝑖𝑡 + �𝑖𝑡 , (3)

where 𝑌𝑖𝑡 is a outcome variable for farmer 𝑖 at monthly visit 𝑡, and ConservationCredits𝑖
is an indicator for being in the overall treatment group and therefore eligible for pay-
ments. 𝑋𝑖𝑡 is a vector of individual-specific covariates chosen by double-selection LASSO
(Belloni et al., 2013), with each chosen covariate centered and interacted with the treat-
ment variable (following Lin (2013) and Athey and Imbens (2017)). Standard errors are
clustered by randomization pair (following de Chaisemartin and Ramirez-Cuellar (2024)),
which nests months within farmer and farmers within groups of neighbors that reported
sharing water prior to the intervention.10

Since our primary outcome variables are right-skewed, we also estimate the same
specifications as Poisson regressions, following Chen and Roth (2024):

𝑌𝑖𝑡 = exp{𝛼𝑡 + 𝜏 · ConservationCredits𝑖 + 𝛾′X𝑖𝑡} · 𝑢𝑖𝑡 , (4)

Estimated via pseudo-maximum likelihood, Poisson regressions have the potential to
more precisely estimate regression-adjusted treatment effects when covariates have mul-
tiplicative effects on the outcome. They directly recover a transformation of the average
treatment effect as a proportion of the control mean (Silva and Tenreyro, 2006).11

4.1 Conservation payments reduce irrigation time and energy use

Table 2 presents estimated effects of overall program eligibility on hours of irrigation,
the variable directly measured by our meters. Our preferred estimate is the covariate-
adjusted specification in column (3): Farmers assigned to the program operated their
pump for an average of 11 fewer hours per month during the intervention period than

10We omit randomization pair fixed effects following Bai et al. (2023), who show that they complicate the
interpretation of the estimand and do not necessarily reduce bias from differential attrition.

11Our primary outcome variables sometimes take a value of zero, so we cannot run log-linear OLS re-
gressions. We avoid other “log-like” transformations, such as the inverse hyperbolic sine, because they are
sensitive to the choice of units (Mullahy and Norton, 2023) and because any notion of an individual-level
percentage change is undefined for a variable that admits zero (Chen and Roth, 2024).
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control-group farmers. This effect represents a 24 percent reduction relative to the control-
group mean of 47 hours per month, and the 99% confidence interval excludes zero.12

Results are broadly robust to alternative specifications. Column (7) shows the same
specification as column (3) but estimated using Poisson regression, indicating that the
program led to a 17 percent reduction (𝑒−0.19 − 1) in irrigation hours. Estimates are less
precise without covariate adjustment (columns (1) and (5)) but the 90% confidence in-
tervals still exclude zero. Columns (2) and (5) include village fixed effects and no other
covariates, a parsimonious example of a fully saturated regression model. We include
this specification to confirm that the main result is similar in a specification guaranteed
to be unbiased for the average treatment effect even in finite samples (Athey and Imbens,
2017).

Effects on energy use are shown in Table 3. Again our preferred estimate is in column
(3): Program eligibility reduced energy use by 151 kWh per month, a 25 percent reduction
compared with a control-group mean of 611 kWh per month. Alternative specifications
are broadly consistent though less precise than the irrigation hours regressions. Point
estimates without covariate adjustment are much smaller but so imprecise that we cannot
reject equality with our preferred specification.

4.2 Treatment effects increased over time

To investigate seasonal patterns in treatment effects, we augment our primary regressions
to estimate separate treatment effects in each month of the program. Results are plotted in
Figure 4 for both OLS and Poisson estimates of our preferred specification, which includes
controls selected by double LASSO.

Average effects of the program increased in magnitude over the course of the exper-
iment, from 7 hours in the first month to 12 and 14 hours in the last two months of the
program. (We can reject that the first and second, or the first and third months, are equal,
at a 5 percent significance level.) These differences are even more dramatic when ex-
pressed as a percentage of the control mean, which declined over time. Treatment effects
estimated using Poisson regression increased from 5 percent in the first month to 21 and
28 percent in the second and third months.

We see two likely explanations for the growing response over time. One possible
reason is increasing trust in the program. Because the conservation credits program was

12Covariates included in this regression are survey round (i.e., month) indicators and eight variables
selected by double LASSO: Baseline hours of irrigation (i.e., between meter installation and the intervention
visit), depth of deepest well, indicators for whether the farmer’s deepest well is a borewell or a dug-cum-
borewell, and indicators for four specific villages.
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a completely new concept, it seems likely that participants would have changed their
behavior only tentatively in the first month. After they saw real cash appear in their
bank accounts, they responded less cautiously. Another possible reason is that demand
for irrigation becomes more elastic later in the growing season. For many crops, water
application is most critical during an early phase of growth. After this early phase, yields
may be less sensitive to irrigation amounts, and so farmers would become more sensitive
to the price of irrigation. We do not currently have data to distinguish between these
explanations, but we expect both are at play.

4.3 Higher prices have little additional effect

Next, we go beyond the effects of the program overall to investigate whether the level
of price incentive affects irrigation behavior, conditional on program participation. We
compare the high- and low-price sub-treatment groups by interacting the overall treat-
ment variable with an indicator for being in the high-price subgroup.13 The results are in
columns (4) and (8) of Tables 2 and 3.

Across specifications and outcomes, the main effects of the program remain large and
statistically significant, while the interaction effects are smaller and not statistically sig-
nificant. This says that being offered a price incentive of 50 INR per hour, relative to not
being offered a price incentive at all, has a greater effect on conservation than increas-
ing the price from 50 to 100 INR per hour. This result is consistent with a convex demand
curve: There may be many low-cost opportunities to conserve water and energy resources
that are left on the table when marginal resource prices are zero but adopted when prices
are positive, but once that low-hanging fruit is picked, resource conservation faces more
rapidly rising opportunity costs.

While none of the interaction effects are statistically significant, the magnitude of the
point estimates vary considerably across specifications and outcomes. The Poisson esti-
mate for hours of irrigation suggests that higher prices have no independent effect, while
the OLS estimate for energy use is about two-thirds as large as the main effect of the
program. We expect future versions of this paper will be able to improve precision and
resolve these discrepancies by incorporating additional covariates and applying double
debiased machine learning to relax functional forms of the regression adjustment.

13We also interact all centered covariates with this sub-treatment indicator.
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5 Demand estimation

We now use the experimental variation introduced by our program to estimate the slope
of demand for groundwater irrigation. The idea is that in a program of payments for
voluntary conservation, not all farmers are actually marginal to the incentive, unlike as
they would be under a universal volumetric electricity price or groundwater pumping
fee. Even for farmers offered payments, the marginal price is zero for those who pump
for more hours than the benchmark, as well as for those who reach the maximum pay-
ment. Figure 5 illustrates these cases relative to the budget set created by a conservation
payments program.

As a result, the treatment effect depends on specific design parameters of our pro-
gram: price, benchmarks, and maximum payments. In contrast, a demand model gives
us potentially more generalizable information as to how the farmers in our sample would
adjust their irrigation behavior under other types of programs.

To estimate demand, we estimate instrumental variables regressions of irrigation on
price, instrumenting for price with the experimental treatment groups:

𝑌𝑖𝑡 = 𝛼𝑡 + 𝛽𝑝𝑖𝑡 + 𝛾′X𝑖𝑡 + �𝑖𝑡 , (5)

where 𝑝𝑖𝑡 ∈ {0, 20, 40} represents the effective marginal price of an hour of irrigation faced
by farmer 𝑖 in month 𝑡. Effective marginal price in each month is zero for control-group
farmers, for treatment-group farmers who did not receive a payment, and for treatment-
group farmers who reached the maximum payment. For farmers who received a payment
that was less than the maximum, their effective marginal price is the price offered to them,
depending on their sub-treatment group (50 or 100 INR per hour).

To boost precision while avoiding overfitting and weak instruments concerns, we use
the instrumental variables LASSO method of Belloni et al. (2012). Our set of candidate
instruments consists of indicators for each of the four conservation credit sub-treatments,
and their interactions with baseline characteristics. We again include month-specific in-
tercepts, choose covariates using double-LASSO, and cluster standard errors by random-
ization pair.

Intuitively, IV estimates take our ITT estimates and scale them by the fraction of the
sample who was in position to respond to the price incentive. Benchmarks were set too
low for many farmers to reach, and too high for other farmers, such that they would
have reached the maximum payment even without behavior change. The IV estimates
instead attribute the full program response to the farmers for whom benchmarks were
set appropriately enough to affect their behavior. This method is in the spirit of quasi-
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experimental estimates of the elasticity of taxable income from non-linear budget sets (as
summarized by Saez et al., 2012) and of electricity demand (Ito, 2014).

5.1 Results

Table 4 reports results. Column (1) reports the first-stage relationship for an IV specifi-
cation with only one instrument: overall eligibility for the conservation credits program.
The estimate says that the average effective marginal price in the treatment group was 42
INR per hour.14 This first-stage relationship is strong, with a very large F-statistic.

Column (2) shows the IV estimate with this one instrument and no covariates, while
specifications in columns (3) and (4) add instruments and covariates. Moving across the
table, first-stage F-statistics remain strong, while the IV estimates gain precision. Our
preferred estimate is in column (4), in which both instruments and covariates are selected
by double LASSO. The coefficient of −0.19 implies that average monthly irrigation hours
fall by 1 hour for every 5 INR increase in the hourly price. At the middle price of 50, and
the control mean of irrigation hours, this implies a price elasticity of 0.20.

We also use this IV approach to plot a demand curve in Figure 6. To construct this
graph, we estimate an IV regression with two endogenous variables – indicators for facing
marginal prices of 50 and 100 INR/hour – and instruments and controls again chosen by
double LASSO. We then plot fitted values from this model at prices of 0, 50, and 100.

One limitation of these IV estimates is that they may overstate the true price elasticity.
The exclusion restriction is that the program affected irrigation only through the effective
marginal price at the end of the meter reading period. This assumption will be violated
if the program affected irrigation for farmers who do not end up facing positive marginal
prices in a given month – for example, if they attempted to conserve below the bench-
mark but failed to reach their target. This is a fundamental limitation of this method for
estimating demand.

However, we can still bound the price elasticity using the IV and reduced-form es-
timates. The IV estimate loads the entire reduced-form effect of the program onto the
fraction of farmers with a positive effective marginal price. If some farmers change their
behavior but are not observed in this group, then the true proportion of farmers affected
by the program is greater than indicated by the first stage. On the other hand, it is unlikely
that all farmers in the treatment group were affected by the program, so the true propor-
tion is less than 1. The true price elasticity is then bounded above by the IV estimate, and

14This value represents a weighted average of the proportion of each group that was marginal, multiplied
by the price offered. We separately calculate that 58 percent of farmer-months in the sample faced a positive
marginal price.
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bounded below by the reduced-form estimate: (0.16, 0.20).15

6 Cost-effectiveness

Finally, we consider the cost-effectiveness of the conservation credits intervention as im-
plemented in the study, from the perspective of an electricity utility. For now we set aside
the social costs of groundwater depletion and focus solely on energy. Suppose political
constraints rule out straightforward volumetric prices for electricity. Might a utility com-
pany find it less costly to reduce demand via a conservation payments program than to
increase supply by procuring additional electricity?

We calculate the cost of reducing electricity demand through this program as the ratio
of total expenditures on conservation payments to total energy conserved. Note this ratio
is not just a rescaling of our demand estimates, because it includes payments made to
inframarginal farmers. For total energy conserved as a result of the program, we use the
preferred OLS estimate from Table 2 because it is more precise than the Poisson estimate.
Table 5 shows further details of this calculation, parameters used, and results.

We estimate that the conservation credits intervention reduced electricity use at a cost
of 6.1 INR per kWh conserved. This value appears to be similar to published estimates of
the costs of electricity procurement. It is slightly greater than the average cost of electricity
procurement per unit sold by the electric utility in our study area, 5.4 INR per kWh, but
the marginal costs of electricity procurement are likely greater than than average costs. It
is also lower than the cost of electricity procurement in the nearby state of Punjab.

In this calculation, we only consider expenditures on conservation payments and omit
other program costs such as meter hardware and personnel and travel expenses for read-
ing meters. We do so for two reasons. First, electric utilities obtain other benefits from
metering their customers, so we prefer to consider the perspective of a utility that is al-
ready collecting this data. Second, metering costs in a permanent program would likely
be lower than in our short-term intervention. It would likely be more cost-effective to
install smart meters that can be read remotely, saving the labor and travel expenses, the
fixed cost of which would then be amortized over a longer period.

It is also worth considering the social costs of groundwater depletion and of air pol-
lution from electricity generation. A utility company may not include these costs in a
cost-effectiveness calculation, but a government may want to consider them as motiva-

15Scaling the ITT effect of −11 hours by the average price offered in the treatment group (75 INR per hour)
gives a reduced-form effect of −0.15 hr/INR. At the middle price of 50, and the control mean of irrigation
hours, this implies a price elasticity of 0.16.
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tion for subsidizing a conservation payments program. Estimating the negative external-
ities from groundwater extraction is beyond the scope of this study. But even relatively
small estimates of these social costs would likely make it socially optimal for a utility to
offer conservation payments before expanding electricity supply.

7 Conclusion

This study finds that moderately sized incentives for groundwater conservation lead
farmers to reduce groundwater irrigation by approximately 20 percent. Impacts increase
over time, indicating that the response to incentives can be sustained. And this is a short-
term response: Our program lasted for only one irrigation season and was introduced
after crops were already planted. In a longer-term program, the response would likely be
even greater, since farmers would be able to substitute crops and adjust other inputs.

These findings suggest that conservation credits, a policy solution similar to exist-
ing “payments for environmental services” programs, are an effective tool for managing
groundwater and energy resources in India. In many settings — and perhaps especially
in the setting of agricultural groundwater extraction in India — Pigouvian taxes may be
politically infeasible. By exchanging corrective taxes for subsidies, conservation credits
overcome the political barriers to taxing the agricultural sector, while still introducing
marginal incentives for conservation. Thus, conservation credits may be a particularly
promising policy approach for reducing inefficient groundwater extraction.

We also find that the program effect is large relative to total cost of incentives: as de-
signed, the overall expenditure per unit of energy conserved is similar to the per-unit
cost a utility company would face in procuring electricity. This suggests that a utility ca-
pable of rolling out conservation credits at low fixed cost could potentially save money
if the program were carefully designed. Our program uses a combination of individual-
specific benchmarks (set using verifiable baseline irrigation information) and maximum
payments to avoid extreme payments for infra-marginal behavior. Yet our program de-
sign leaves room for further improvements in benchmark targeting and careful setting of
maximum payments. Understanding how to optimally set benchmarks and maximum
payments, including understanding the best information to use for setting these parame-
ters, is a key question for future work.
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Figure 1: Villages in Study Area

Notes: This figure shows the villages in Gujarat, India where participants were enrolled as blue
dots.
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Full Sample

Control:                
Hours-of-use Meter

Conservation Credits:                
Meter and Payments

High 
Benchmark/ 

High Price

High 
Benchmark/ 

Low Price

Low 
Benchmark/ 

High Price

Low 
Benchmark/

Low Price

Figure 2: Intervention Design

Notes: This figure illustrates the four interventions used in the randomized experiment. Farmer
sharing pools were assigned in equal proportion to the Control and Conservation Credits groups.
Within the Conservation Credits group, the four sub-treatments were assigned in equal propor-
tion.
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Partner Lists

Eligibility, Baseline and Consent

Meter Installation

Sample 
Frame

Summer 
2022
Fall 

2022
Baseline Meter Reading, RandomizationDec 

2022
1st Meter Reading Follow-upJan

2023

2nd Meter Reading Follow-upFeb
2023

3rd Meter Reading Follow-upMar
2023

Figure 3: Experiment Timeline

Notes: This figure displays the timeline of our experimental intervention and data collection pro-
cesses.
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Figure 4: Treatment effects of conservation credits grew over time

Notes: This figure plots the treatment effect of offering Conservation Credits on hours of irrigation
across the three months of the intervention period. Treatment effects are estimated using double-
LASSO selected controls. Error bars represent 95% confidence intervals.
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Slope: p
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Figure 5: Budget set of conservation credits.

This figure shows the general form of the budget set created by a conservation credit program,
along with indifference curves of two representative participants. The payment equals the price 𝑝

times the quantity units conserved below the benchmark, up to a maximum payment. Irrigator A
is marginal and will respond to the program by reducing quantity extracted. Irrigator B is extra-
marginal, and does not change quantity extraction in response to the program.
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Figure 6: Demand for Hours of Irrigation

Notes: This figure plots the estimated demand curve for groundwater irrigation identified using
experimental variation in the marginal price of an hour of groundwater irrigation. Price effects
are estimated using instrumental variables regression with double-LASSO selected controls and
instruments (selected from our four Conservation Credits sub-treatments and their interactions
with selected control variables). Error bars represent 95% confidence intervals.
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Table 1: Baseline Summary Statistics in Full Sample and by Treatment Group

Full Sample Control Treatment

(1) (2) (3) (4)
Mean SD Mean Mean

A. Demographics
Household size 6.34 2.85 6.46 6.22
Scheduled caste/tribe or other backwards caste 0.86 0.34 0.86 0.87
Muslim 0.09 0.28 0.09 0.09
Years of education (household head) 10.94 3.39 10.88 11.00
Literacy (household head) 0.82 0.38 0.83 0.81

B. Farm statistics
Plot hectares 1.95 1.35 1.97 1.92
Number of crops cultivated 1.96 1.08 2.01 1.91
Fraction of farmed area planted with cotton 0.53 0.41 0.54 0.53
Fraction of farmed area planted with sorghum/millet 0.15 0.25 0.15 0.16
Fraction of farmed area planted with groundnut 0.15 0.25 0.14 0.15
Fraction of farmed area planted with pulses 0.11 0.21 0.11 0.10
Has cow, ox, or buffalo 0.92 0.27 0.93 0.91
Has plow or tractor 0.50 0.50 0.50 0.50

C. Well Statistics
Total number of active wells 1.19 0.39 1.19 1.19
Deepest well is dugwell 0.24 0.43 0.23 0.26
Deepest well is borewell 0.25 0.43 0.23 0.27
Deepest well is dug-cum-borewell 0.51 0.50 0.55 0.47
Deepest well: ever deepened 0.17 0.37 0.17 0.17
Deepest well: depth (meters) 58.62 85.17 53.66 63.12
Deepest well: max water level (meters) 16.07 36.60 14.68 17.33
Deepest well: pump power 5.61 3.27 5.46 5.75

D. Irrigation Statistics
Pre-intervention monthly irrigation hours 71.71 71.09 69.81 73.43
Total self-reported hours of irrigation on farm 340.97 2205.91 327.45 353.25
Total self-reported hours of irrigation off farm 32.46 153.97 32.17 32.73
Purchased water for irrigation 0.01 0.11 0.01 0.01
Used drip irrigation 0.41 0.49 0.42 0.41
Used sprinkler irrigation 0.01 0.10 0.01 0.02
Used raised beds 0.69 0.46 0.69 0.68
Used rotational, strip, or zero-tillage 0.19 0.39 0.17 0.20
Used farm bunds 0.09 0.29 0.10 0.08

Test for joint orthogonality of covariates
F-statistic 0.64
P-value 0.93

Sample size
Number of individuals 989 471 518
Percent of sample 100.0 47.6 52.4

Notes: This table summarizes baseline characteristics of the sample of farmers who completed all three meter reading survey
rounds during the intervention. The F-statistic and associated P-value test the joint orthogonality of all characteristics listed
in the table to treatment assignment relative to the control group.
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Table 2: Intent to Treat Impacts of Conservation Credits on Hours of Irrigation

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)
Conservation Credits -5.97∗ -9.92∗∗∗ -11.0∗∗∗ -9.37∗∗∗ -0.14∗ -0.23∗∗∗ -0.19∗∗∗ -0.22∗∗∗

[3.46] [3.21] [2.56] [3.24] [0.079] [0.073] [0.062] [0.075]

Conservation Credits
× High Price

-2.98 0.016
[3.53] [0.085]

Control Mean 46.59 46.59 46.59 46.59 46.59 46.59 46.59 46.59
Fixed Effects Village Village
Controls X X X X
N Clusters 503 503 503 503 503 503 503 503
N Farmers 989 989 989 989 989 989 989 989
N Observations 2,967 2,967 2,967 2,967 2,967 2,967 2,967 2,967

Notes: The sample includes all farmers who completed all three meter reading survey rounds during the intervention. The outcome
is monthly hours of irrigation by the farmer during the three intervention months (scaled to 31 days). Survey round fixed effects are
included in all specifications. Controls, selected by double-LASSO, are baseline irrigation hours, depth of deepest well, indicators for
deepest well type and a selection of village dummy variables. Controls are centered and interacted with the treatment indicator or
indicators. Standard errors clustered at the randomization pair level are in brackets.

Table 3: Intent to Treat Impacts of Conservation Credits on Energy Use (kWh)

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)
Conservation Credits -23.8 -98.7 -150.8∗∗∗ -126.8∗∗ -0.040 -0.17 -0.14∗ -0.18∗

[70.3] [64.5] [42.2] [53.2] [0.12] [0.11] [0.080] [0.093]

Conservation Credits
× High Price

-81.5 -0.059
[57.0] [0.11]

Control Mean 610.81 610.81 610.81 610.81 610.81 610.81 610.81 610.81
Fixed Effects Village Village
Controls X X X X
N Clusters 503 503 503 503 503 503 503 503
N Farmers 989 989 989 989 989 989 989 989
N Observations 2,967 2,967 2,967 2,967 2,967 2,967 2,967 2,967

Notes: The sample includes all farmers who completed all three meter reading survey rounds during the intervention. The outcome
is monthly kWh of energy used for irrigation by the farmer during the three intervention period months (scaled to 31 days). Energy
use is calculated from hours of irrigation as described in Section 2. Controls, selected by double-LASSO, are baseline irrigation kWh,
baseline irrigation hours, depth of deepest well and a selection of village dummy variables. Controls are centered and interacted with
the treatment indicator or indicators. Standard errors clustered at the randomization pair level are in brackets.
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Table 4: Demand for Groundwater Irrigation: Instrumental Variables Estimation

First Stage IV

(1) (2) (3) (4)
Marginal Price (INR/Hour) -0.14∗ -0.13∗ -0.19∗∗∗

[0.080] [0.078] [0.046]

Conservation Credits 42.2∗∗∗

[1.44]
Outcome Control Mean 0.00 46.59 46.59 46.48
CD Wald F-stat 1,562.17 450.7 35.4
Fixed Effects Month Month LASSO
Controls LASSO
Instruments Treatment Sub-Treatments LASSO
N Instruments 1 4 29
N Clusters 494 494 492
N Farmers 989 989 981
N Observations 2,967 2,967 2,943

Notes: The sample includes farmer-months among farmers who remained in the experiment until the final meter
reading. The outcome is the monthly hours of irrigation in each of the three intervention period survey rounds.
The marginal price of an hour of irrigation is instrumented using the the overall Conservation Credit treatment in
Columns 2, using all four Conservation Credit sub-treatments in Column 3, and using additional high-dimensional
instruments selected by double-LASSO in Column 4. Standard errors clustered at the randomization pair level are in
brackets.

27



Table 5: Cost-Effectiveness of Conservation Payments

Parameter Value Unit Source
Panel A: Parameters used
Pump motor efficiency, from a
similar context

40% - Mitra, Balasubramanya,
& Brouwer (2023)

Unit conversion constant 0.7457 kW per hp Known constant
Mean duration of intervention 3.7 Months Meter reading data
Panel B: Calculation of cost-effectiveness
Average effect of program on
electricity use, monthly

-150.8 kWh/month
per farmer

Table 2, column (3)

Average effect of program,
scaled to rabi season

-552.6 kWh per
farmer

Calculated

Average conservation
payments, rabi season

3369 INR per
farmer

Program
implementation data

Average expenditure per unit
electricity conserved

6.1 INR/kWh Calculated

Panel C: Comparisons of cost-effectiveness
Cost of reducing electricity use
through this program

6.1 INR/kWh From above

Average cost of electricity
procurement per unit sold,
Gujarat

5.4 INR/kWh Paschim Gujarat Vij
Company Ltd. (2021)

Cost of electricity procurement,
Punjab

7.9 INR/kWh Mitra, Balasubramanya,
& Brouwer (2023)
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