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1 Introduction

One of the fundamental constraints to economic development is limited managerial

capacity. Despite the ubiquity of small firms in developing countries, many have low

profit and few workers. Billions of dollars are spent attempting to correct these skill

deficiencies (Blattman and Ralston, 2017). While many solutions have been proposed,

a flurry of recent micro-level interventions have highlighted one promising channel:

learning from others. These interventions enable individual business owners or man-

agers to interact with people that they may not have had the chance to otherwise,

finding increases in profit, technology adoption, and managerial skills.1

Yet the general equilibrium, at-scale implications of these interventions are less

explored. There is reason to suspect they may differ from what could be extrapolated

directly from these interventions. When the knowledge created in these meetings can

further permeate the economy through the diffusion, the gains from better matching

will depend on changes to the entire distribution of knowledge (Lucas and Moll, 2014;

Perla and Tonetti, 2014). These changes need not be directly related to the gains

to the average person in the intervention. Our contribution is to investigate these

relationships in a general equilibrium model of firm-to-firm diffusion, in which we

study the cost of frictions that limit learning opportunities and how they relate to

these micro-level interventions.

We focus our model around the results of a randomized controlled trial in Kenya

from earlier work (Brooks et al., 2018), though as we will discuss at length later, many

of the insights can be formally generalized to a class of models and interventions that

cover a substantial amount of recent work. In this RCT, we randomly paired high-

and low-profit female business owners in Nairobi, Kenya. On average, profit rose by

19 percent for the less-profitable member of the match, with no statistically significant

change for the more profitable business owner. The changes mostly occurred on the

cost side: treated owners were more likely to switch suppliers and their costs declined

significantly.

Our RCT, and many like it, focused on outcomes of those engaged in a match.

This has the benefit of clearly showing that there exists some friction in the learning

process that can potentially be overcome with policy. But the total gains of such a

program when implemented at scale should include the fact that these agents learn

1There now exists a broad set of interventions that are designed to give firms access to new information embedded
in other economic agents. Cai and Szeidl (2018) create randomly-formed business groups in China. Brooks et al.
(2018) and Lafortune et al. (2018) create random one-to-one matches among Kenyan and Chilean microenterprise
owners. Fafchamps and Quinn (2018) introduce smaller-scale firm owners to managers of high-profit firms in Ethiopia,
Tanzania, and Zambia. Relatedly, Atkin et al. (2017) introduce random variation in buyer-seller links in Egypt and
Beaman et al. (2021) randomly seed information on new technology in Malawi. See also Giorcelli (2019) and Bianchi
and Giorcelli (2022) for historical examples of firm-to-firm knowledge transfers and Munshi (2008) and Breza et al.
(2019) for reviews.
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new information and skills that can then be transmitted to others in the future.

We formalize this equilibrium diffusion by building a general equilibrium model of

knowledge diffusion. The basic features of the model share much with standard

models in the literature, such as those reviewed in Alvarez et al. (2008) and Buera

and Lucas (2018). We adopt the specifics to take seriously the channels highlighted

by the RCT and the economic realities of the economy in which it is run.

Specifically, we build a model in which individuals can choose to run a firm or work

at one. This decision depends on the income that can be earned in either occupation.

Self-employment income depends on knowledge of the market. More knowledgeable

agents can more easily seek out low-cost suppliers, consistent with our empirics. We

refer to this as “knowledge” to fix definitions, but it is more broadly any ability or

skill that makes the firm more profitable. This knowledge can be diffused. Each

period, every agent randomly interacts with a firm owner. If she is lucky enough

to meet a high-knowledge firm owner, she can increase her own stock of knowledge,

thus allowing her to more easily find lower cost suppliers. Thus, the distribution of

knowledge in the economy is the key aggregate state variable. It controls the potential

set of meetings available to agents, and is determined both by the economic decisions

made by agents and the technology that translates meetings into knowledge.

We discipline the model in large part using evidence from the RCT. We match a

number of relevant empirical moments from the RCT, including the average treatment

effect and measures of heterogeneity within the treatment effect. These pin down

important features of the learning technology and do so in a way that is independent of

much of the remaining model structure we impose to measure quantitative outcomes.

The model also matches other moments not directly targeted like the fade-out of the

treatment effect over time.

We use the model to simulate the gains from making it easier for firm owners to

learn from each other, taking into account general equilibrium forces. These forces are

two-fold. First, there is a direct effect of the better meeting technology. If everyone

can more easily learn from others, this pushes out the equilibrium distribution of

knowledge and makes all firms more profitable. The second equilibrium force is

on prices. By making firms more profitable, the wage increases. This competitive

pressure pushes marginal firms out of business and amplifies the direct effect. Pushing

out the lowest-knowledge firms de-congests learning for everyone else. Quantitatively,

we find that average income rises by 11 percent; two-thirds comes from the direct effect

on the distribution of knowledge and the remainder coming through the amplification

effect from price changes.

We then use the model to ask how much discipline the empirical average treatment

2



effect puts on the realized general equilibrium gains from the model. This moment is

often used to measure the success of an intervention or its potential for scale, but a

growing literature has pointed out that the link to general equilibrium implications

may not be straightforward (see reviews in Buera et al., 2022; Lagakos and Shu, 2022).

To answer this question, we re-compute the aggregate gains, but drop all treatment

effect moments used in estimation except the average treatment effect. Instead of

using these additional moments, we arbitrarily set the parameters that are matched

to them. When we do this, we find that the aggregate gains can vary from 0.6 to 38

percent depending on the parameters chosen. These results have two implications.

First, our modeling choices do not pre-determine small or large aggregate gains. They

can vary widely depending on which way the empirics push the model parameters.

Second, the discipline on the aggregate gains comes in large part from moments other

than the average treatment effect.

When we investigate these other empirical moments, we find that an adjusted co-

variance moment plays a critical role in generating the equilibrium gains. In the data,

this moment represents how the individual-level treatment effect co-varies with the

baseline profitability of individual’s match. Or put differently, it measures how much

farther into the tail of the knowledge distribution an agent is pushed by meeting with

a high-knowledge match relative to a low-knowledge match. This empirical notion is

closely connected to the driving force behind the equilibrium gains we observe in the

model. Here we shock the meeting technology to make the average match better (as

we do in the experiment) and the equilibrium gains are driven primarily by how much

the knowledge distribution shifts in response, similar to what our covariance moment

measures. Indeed, we show that changes to the model parameter pinned down by this

moment cause larger shifts in the knowledge distribution than the parameter pinned

down by the average effect.

As a practical matter, we show that this covariance moment can be measured as a

coefficient from a simple linear regression run on treated firms within the experiment.

Thus, one contribution of this paper is to highlight an important policy-relevant

moment that can (1) be measured easily in a partial equilibrium RCT and (2) provides

important information about the gains that could be achieved at scale.

Motivated by this last result, our final exercise is to take a step back and ask if

there are any more general lesson to be drawn about measurement in partial equi-

librium RCTs in the presence of diffusion. We view this as an important question

given the growing set of RCTs that have a similar flavor to the one used here (i.e.,

random opportunities to learn) but differ in exact implementation (i.e., group meet-

ings of firm managers as in Cai and Szeidl (2018) or buyer-supplier links in Atkin
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et al. (2017)). We show the same procedure we use holds for a broad class of both

equilibrium diffusion models and RCTs. That is, our procedure leverages features

of a broader class of interventions than the specifics of our Kenyan RCT, and pins

down the same relationship between moments and parameters in a broader class of

diffusion models than the one we use.

Therefore, while we join a recent literature that disciplines macro-development

models with experiments to simulate scaled policy (e.g. Buera et al., 2021; Fujimoto

et al., 2021; Lagakos et al., 2021; Kaboski et al., 2022; Fried and Lagakos, 2021),

we further show how to measure additional moments within the RCT that provide

relevant information about the gains at scale that are useful for policy decisions. These

results show that “small scale” RCTs can provide relevant information about at-scale

gains with careful measurement and links to theory, without necessarily incurring the

costs required to run larger and larger clustered experiments to measure equilibrium

effects.2 We further link together a growing micro-development literature with a

parallel one in macro-development and growth, where the non-rivalrous nature of

information has long been seen a contributor to aggregate growth (Romer, 1990;

Jones, 1995; Kortum, 1997). Jovanovic and Rob (1989), Lucas (2009), Lucas and

Moll (2014), and Perla and Tonetti (2014) micro-found the equilibrium diffusion of

knowledge between agents, and form the basis for the model we use here.3

2 Empirical Evidence on Diffusion

Recently, several microeconomic studies have documented the potential benefits for

firm owners or managers who are randomly chosen to interact with highly skilled

individuals. These take the shape of other managers or potentially by interacting

through supply chains. We focus on one of those here and take up others in the

Appendix. We utilize the randomized controlled trial in Brooks et al. (2018).4 Space

constraints naturally require us leave out some details, but we refer interested readers

to Brooks et al. (2018) for other (less critical) details.

2In addition to costs, defining catchment areas for clusters is difficult. Muralidharan and Niehaus (2017) discuss
the difficulty of defining spillover borders. Berguist et al. (2019) formalize a related issue when attempting to interpret
agricultural interventions in the presence of trade flows.

3These models have been extended to international trade (Buera and Oberfield, 2020; Perla et al., 2021), innovation
policy (Benhabib et al., 2021; Lashkari, 2020), and various types of learning among co-workers (Herkenhoff et al.,
2018; Jarosch et al., 2021; Wallskog, 2021).

4We use this experiment because we have access to the relevant data, not because we view this particular experi-
ment as better or worse than other similar experiments that fall under our assumptions.
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2.1 Details of RCT and Data Collection

The experiment took place in Dandora, Kenya, a dense informal settlement on the

outskirts of Nairobi. Via a representative sample of firm owners in Dandora, we ran-

domly matched more profitable entrepreneurs with less profitable ones. We followed

the owners over 17 months to measure changes in business practices and profitability

over time.

The sample we draw from is the set of female business owners who have been in

operation for less than 5 years.5 We then randomly select a subset of these business

owners to randomly match with a more profitable owner. A control group receives

no such offer. Firms were then surveyed over 6 quarters to track the time series of

treatment.

The set of more profitable owners were selected from those businesses with owners

over 40 years old and at least 5 years of experience. This was to minimize the

importance of “luck” in baseline profit realizations to allow us to focus on truly

productive business owners. We then recruited business owners with the highest

profit until we had a sufficient number for matches. Of those contacted, 95 percent

accepted. Matches with the treatment firms were randomly created conditional on

industry. Figure 7 in Appendix A shows the profit distributions for the full population,

the sample of control and treatment firms, and the intervention-defined matches. As

expected, our study population is somewhat poorer the average and the matches are

drawn from the far right tail.

It will be useful when we relate these results to the model to have some relevant

distributions defined. We refer to the cumulative distribution of baseline profit for

treatment and control firms as HT,π(π) and HC,π(π) (which in theory are the same

due to randomization). The baseline matches for the treatment group are distributed

with c.d.f. ĤT,π(π̂).

Details of a “Match” Like any RCT, our matches were designed to remain faithful as

possible to the model without sacrificing the practicality required to generate take-

up. This necessarily involves trade-offs, which we discuss here. The program was

pitched to both sides of the match as a mentee-mentor relationship, and thus was

explicitly focused on business success. The more successful business owners were

the “mentors,” while the less successful were the “mentees.” The mentors were told

they could potentially help other business owners learn the requisite skills required

to operate in Nairobi. We provided no topics to discuss, preferring that the content

5The sex selection criteria is to limit heterogeneity outside the model. Note, however, that females make up 65
percent of business owners in Dandora and 71 percent of owners with businesses open less than 5 years.
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was self-directed. We offered mentors only some optional, vague prompts in an initial

orientation meeting that could be used (“What challenges did your mentee face this

week?”). Matches were designed to last for one month, though of course there was

no restriction on meeting after the formal end of the program.

One potential concern is our meetings may not necessarily reflect those that un-

derlie the usual matching process, perhaps related to indirectly priming mentees to

believe the matches would be beneficial. There is little we can do to rule this out

completely.6 It is a problem common to most randomized controlled trials when at-

tempting any extrapolation outside the study sample. We designed the details to be

as light-touch as possible while offering a reasonable chance at successful take-up (i.e.,

to initiate matches, we simply gave the mentee the phone number of the mentor).

Results are balanced given the randomization and we provide details in Appendix

A.

2.2 Treatment Effects and Underlying Mechanisms

Figure 1 begins by plotting the average treatment effect (as a percentage) over time,

along with the 95 percent confidence interval. There is a large treatment effect in the

immediate aftermath of the treatment period that fades quickly. We test whether

our model rationalizes this pattern after laying out the model below, and find that it

does.

Figure 1: Time Series of the Average Treatment Effect (from Brooks et al., 2018)
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-0.4

-0.2
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Figure notes: Figure plots average treatment effect as percentage above control mean (0.4 = 40%),
along with the 95 percent confidence interval. Treatment takes place between quarters 0 and 1.

6We note, however, that evidence of the mentor’s business success are easily visible to the mentee. Mentors had
substantially more physical capital and workers, and had a fixed, relatively large buildings from which they conducted
business. Moreover, the first meeting took place at the mentor’s business. Thus, that the mentor was “good” at
running a business would likely have been understood with or without us.
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Mechanisms The observed changes in profit primarily come from lowering input

costs, with unit inventory costs falling by 49 percent relative to the control group.

Consistent with the cost channel, we find that treated firms are 19 percent more

likely to switch suppliers in the aftermath of the treatment. We will take seriously

this channel in the next section.

How does this result square with the quick fade-out observed in Figure 1? We

find that the economic environment is characterized by substantial buyer-supplier

turnover. Sixty-two percent of control firms switch suppliers in the 3 quarters im-

mediately following treatment. Thus, any value procured by firms on this dimension

by meeting with others is likely to have a short half-life. As we will show shortly,

estimating the law of motion for ability similarly points to limited persistence, even

without targeting this half-life directly.

Finally, we note that the matches create surplus and are not transfers between

the two members in the match. We use the details of the matching procedure to

estimate no changes in profitability, scale, or any management practices for the more

productive member of the match.7

Is there diffusion? A natural remaining question is whether or not knowledge actually

diffuses from this experiment. First, we note that changes in profit are driven by

changes in managerial ability (Brooks et al., 2018). We observe no loans, joint input

purchases or bulk discounts, profit sharing, or other mechanisms that would suggest

alternative margins.

But an alternative theory of managerial capacity would be the high-knowledge

match replacing the agent’s span of control for the duration of the match. This

would suggest a model of firm hierarchy (as in Caliendo et al., 2015), but perhaps

not knowledge diffusion.

First, we note that our model can replicate the treatment effect pattern above (we

discuss this Section 3.4), so a quick treatment effect fade-out is insufficient to answer

this question. However, changes in ability could be driven by the more knowledgeable

match replacing the agent’s span of control for the duration of the match. This

would suggest a model of firm hierarchy (as in Caliendo et al., 2015), but perhaps

not knowledge diffusion.

First, we find that the change in profit is driven by changes in managerial ability

(Brooks et al., 2018).8 However, changes in ability could be driven by the mentor

7See Brooks et al. (2018) for details on the procedure. This forms the basis for our assumption of the max operator
in the law of motion for ability, though as we discussed in Section 5.4, it is not crucial. Jarosch et al. (2021) find
similar evidence among German co-workers.

8We also observe no loans, joint input purchases or bulk discounts, profit sharing, or other mechanisms that
suggest alternative theories.

7



replacing the mentee’s span of control for the duration of the match. This would

suggest a model of firm hierarchy (as in Caliendo et al., 2015), but perhaps not

ability diffusion.

In part to answer this question, we re-ran the field experiment used here with one

additional feature: we randomly selected original mentees to mentor control firms ex

post. We find that characteristics of the original mentor impact the treatment effect

of the second-round mentee. This again points to the diffusion. These results form

the basis of ongoing follow-up work to understand the details of how random meetings

affect profitability, but we provide the relevant regression result in the Appendix B

to provide evidence on this point.9,10

Together, this evidence shows that a diffusion model is the correct framework in

which to study scaling these interventions.

3 A General Equilibrium Model of Diffusion

We now build a full general equilibrium model to study what we learn about the

potential aggregate gains from this RCT. We build the model to remain consistent

with the economic environment of the study and with the mechanisms highlighted

in the previous section. Since the economy is primarily made up of relatively small

firms, there is a non-trivial occupational choice decision between wage work and

firm operation. We also model a search and bargaining process between firms and

suppliers, motivated by the empirical results. Finally, we model a small open economy.

Suppliers have access to infinite supply of inputs, consistent with their connection to

the broader Nairobi and Kenyan economy. The labor market and diffusion of ability

are local.

3.1 Economic Environment

Time is discrete and infinite. A period is one quarter. There is a unit mass of agents.

The state of an agent is her ability to find a supplier z, which evolves over time. The

aggregate state of the economy is the distribution of ability, M(z). Each agent dies

with exogenous probability δ and a mass δ of new agents replace them each period.

New agents draw their initial ability from a fixed distribution with c.d.f. G(z).

Every agent has flow utility u(c, s) = ω log(c) + (1 − ω) log(1 − s), where c is

consumption and s is effort (discussed below). ω is the relative weight of consumption

9This work is pre-registered with AEA Registry ID AEARCTR-0005564.
10In a similar RCT with randomized group meetings of Chinese managers, Cai and Szeidl (2018) cross-randomize

information on a new financial product to test whether information is flowing between randomly matched groups of
firms. They find that it is. They take this as direct evidence of transmission between firms, as do we. We estimate a
model of this experiment in the Appendix.
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in utility. There are no borrowing and savings markets, so consumption is equal to

income.

Each period, an agent can choose between running a firm and working at one.

Wage work earns the market-clearing wage w, as labor is traded on a competitive

market. Firms earn profit π = xαnη − pxx − wn, where x and n are intermediate

inputs and labor services, and px and w are their respective prices.

Supplier Matching, Input Choice, and the Importance of Ability Intermediate pur-

chases require a firm to seek out a supplier. There are a continuum of suppliers

indexed by their marginal cost m who earn profit πs(m,x) = (px −m)x. Suppliers

can source from some outside entity and thus can provide whatever amount of input

x is requested by firms at marginal cost m. This is consistent with their connection

to the broader Nairobi and Kenyan economy.

Firms exert search effort s to find a supplier. Given effort s and ability z, the

firm matches with a supplier m = e−sz
α+η−1
α . Thus, ability makes it easier to seek

out lower cost suppliers.11

Once they meet, the two parties Nash bargain over the price px that the firm will

pay, taking into account the optimal input choice by the firm at that price. This

implies an equilibrium price

p∗x(m) = argmaxpx (π)ν(πs)1−ν (3.1)

for bargaining weight ν and the participation constraint that both the supplier and

firm earn weakly positive profit.

Ability Transmission Ability is transmitted between agents. It evolves as

z′ = ec+εzρ max

{
1,
ẑ

z

}β
. (3.2)

The final term is the additional benefit from the imitation opportunity. β = 0

eliminates firm-to-firm ability transmission. At its other extreme, ρ = β = 1 simplifies

the law of motion to z′ = ec+ε max{z, ẑ}. Our goal is, in part, to let the data tell us

where these two parameters fall.12

We assume learning occurs via operating firms. Denoting M f as the equilib-

rium distribution of operating firms (defined formally below), we write M̂(ẑ;M) =

11The constant returns assumption for suppliers eliminates any strategic interactions between supplier-firm bar-
gaining games.

12The max operator in the diffusion process rules out any benefit to the higher ability agent in the match. We
show later that this is not a critical assumption but does have some empirical support (Brooks et al., 2018; Jarosch
et al., 2021). Since our empirical results will eventually imply it, we maintain it throughout.
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M f (ẑ;M)1/(1−θ).

Occupational Choice Decision and Source Distribution The aggregate state of the

economy is the distribution of ability, M(z). At the start of each period, each agent

chooses to either operate a firm or engage in wage work given her ability z and

aggregate state M .

The flow utility of operating a firm is

uf (z,M) = max
s,x,n≥0

ω log(xαnη − pxx− wn) + (1− ω) log(1− s)

s.t. m = f(s, z)

px = argmaxpx [π]ν [πs(m)]1−ν

The first constraint is the type of supplier met with search effort s. The second

guarantees that the realized cost is the outcome of Nash bargaining between the firm

and its supplier. Flow utility for a worker is uw(z,M) = ω log(w(z,M)), where w is

the equilibrium wage. We summarize the occupational choice decision as u(z,M) =

max{uf (z,M), uw(z,M)}. We denote decision rule φ(z,M) = 1 as firm operation

and φ(z,M) = 0 as wage work.

The source distribution is therefore

M̂(ẑ;M) =

( ∫ ẑ
0
φ(z,M)dM(z)∫∞

0
φ(z,M)dM(z)

) 1
1−θ

.

Recursive Formulation Taken together, the value of entering the period with ability

z and aggregate state M is

v(z,M) = max{uf (z,M), uw(z,M)}+ (1− δ)
∫
ε

∫
ẑ

v(z′(ẑ, ε; z),M ′)M̂(dẑ,M)dF (ε)

s.t. z′(ẑ, ε; z) = ec+εzρ max

{
1,
ẑ

z

}β
Equilibrium We study the stationary equilibrium of this model, which includes the

value function v, decision rules for occupation φ(z,M), effort s(z,M), labor n(z,M),

and intermediates x(z,M), bargaining outcomes px(z,M), and a distribution of abil-

ity M(z), such that the value functions solve the agent’s problem above with the
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associated decision rules, and the aggregate state evolves according to

M ′(z′) := Λ(M(z′))

= δG(z′) + (1− δ)
∫ ∞

0

∫ ∞
0

F (log(z′)− ρ log(z)− β log(max{1, ẑ/z})− c)M̂(dẑ;M)M(dz).

Λ(M) is the law of motion for the aggregate state. It consists of the ability of new

entrants, δG(z), and the evolution of ability for surviving agents. In the stationary

equilibrium, M∗(z) = Λ(M∗(z)).

3.2 Characterization of Equilibrium

We summarize a few useful features of the equilibrium in the following proposition,

with the proof in the Appendix.

Proposition 1. The following results hold in the equilibrium of the model:

1. The solution to the Nash bargaining game is a constant markup over marginal

cost, px(m) ∝ m.

2. The equilibrium profit function can be written as π(z, w) = A(w)z, where A(·)
depends only on the equilibrium wage and parameters of the model.

3. All agents with z ≥ z operate firms. That cut-off is given by the function z(w) =

w
1−α

1−η−αC for a constant C.

The first two results of Proposition 1 turn out to be useful for calibration below.13

The cut-off occupational choice rule follows directly from the result that π(z, w) =

A(w)z. This occupational choice margin is central to the diffusion externality in the

model. Since agents do not take into account how their occupational choice affects the

learning of others, the decentralized economy allocates more agents to firm operation

than the planner would (we solve the planner’s problem in Appendix E). We isolate

the importance of this margin in the quantitative results below.

3.3 Model Calibration

We now turn to parameterization the model. This involves two steps. In the first

step we estimate the diffusion parameters. The beauty of the partial equilibrium RCT

is that we can estimate these parameters independent of the remaining structure of

the model. The second step is a more standard calibration given these diffusion

13That π(z, w) = A(w)z follows because matching between suppliers and firms is deterministic. Uncertainty these
matches is straightforward to include. It requires an adjustment to the diffusion parameter estimation analogous to
a measurement error adjustment. We discuss this measurement error extension in the Appendix.
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parameters. The full set of moments and parameter values are reported in Table 2 in

Appendix A, and the model matches them well.

3.3.1 Estimating Diffusion Parameters

When we estimate the diffusion parameters we restrict attention to the baseline and

survey wave 1 quarter post-treatment. There are two sub-steps that we describe in

turn.

Step 1: Estimating (β, ρ) from Treatment Data We first estimate the parameters β

and ρ. These control the change in ability conditional on a given match ẑ from the

law of motion (3.2). We can re-write this law of motion in terms of profit because

z ∝ π in equilibrium,

log(π′) = c̃+ ρ log(π) + β log

(
max

{
1,
π̂

π

})
+ ε (3.3)

where π and π̂ represent an individual and her match’s profit, and c̃ is a constant.

If we consider just treated firms (and denote that set T) and note that in our

RCT π̂i ≥ πi ∀i ∈ T, we have

log(π′i) = c̃+ ρ log(πi) + β log

(
π̂i
πi

)
+ εi for i ∈ T. (3.4)

Equation (3.4) is a straightforward linear regression run only on treated firms. These

coefficients (β̂, ρ̂) are equal to their structural counterparts. This relies critically on

the fact that matches within the treatment are randomized; the shocks ε need not be

i.i.d., and therefore require additional assumptions so that coefficient estimates are

not biased.

Those results are in Column (1) of Table 1, and we find that β = 0.538 and

ρ = 0.595. For some sense of what these parameters represent, note that the closed

form solution for β̂ is

β̂ =
cov(log(π′i), log(π̂i))

σ2
log(π̂)

.

That is, it measures the covariance between firm i’s match quality as measured by

her match’s baseline profit π̂i and i’s profit gains π′i. It is then normalized by the

exogenous variation fed into the experiment, σ2
log(π̂). The result β̂ = 0.538 implies

there is a strong, but far from perfect, internalization of match knowledge.

ρ measures the persistence of profit after properly controlling for different match

quality across individuals. Here, we find that profit is not very persistent, at least
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relative to measures in richer countries or among larger firms. This is consistent with

the mechanisms discussed in the previous section.

Step 2: Estimating θ from Relative Profit Once we have (β, ρ) we can estimate θ. The

relevant empirical moment to estimate θ is the average treatment effect. We measure

the average treatment effect in percentage terms, so that ATEdata := E[π′T ]/E[π′C ].

After some algebra, we can write the model’s implied average treatment effect as

ATEmodel(θ) =

∫ ∫
πρ max [1, π̂/π]β dĤT,π(π̂)dHT,π(π)∫ ∫

πρ max [1, π̂/π]β dM f
π (π̂)1/(1−θ)dHC,π(π)

(3.5)

where HT,π, HC,π are the empirical cdfs of baseline profit for treated and control firms

and ĤT,π is the empirical cdf of the matches for treated firms. ATEmodel(θ) is the

average treatment effect that would result from running the exact same RCT in the

model economy that was discussed in Section 2.

Once we have estimates (β, ρ), equation (3.5) includes only one unknown: θ. The

remaining terms include only distributions of profits. For a given RCT, equation (3.5)

is monotone and continuous in θ. This means that a solution ATEdata = ATEmodel(θ)

is unique if it exists. A solution exists if ATEdata ∈ [Γmin,Γmax], where these bounds

are given by

Γmin = inf
θ

∫ ∫
πρ max {1, π̂/π}β dĤT,π(π̂)dHT,π(π)∫ ∫

πρ max {1, π̂/π}β dM f
π (π̂)1/(1−θ)dHC,π(π)

Γmax = sup
θ

∫ ∫
πρ max {1, π̂/π}β dĤT,π(π̂)dHT,π(π)∫ ∫

πρ max {1, π̂/π}β dM f
π (π̂)1/(1−θ)dHC,π(π)

.

These bounds guarantee the treatment effect can be rationalized by the model. For

example, if β = 0 the model cannot rationalize any non-zero treatment effect. This

implies Γmin = Γmax = 0. Usefully, these bounds are computable with the relevant

RCT data and estimates (β, ρ). Our treatment effect falls within the bounds and

therefore there is a unique θ such that ATEdata = ATEmodel(θ).

The relevant empirical moment is in Column (2) of Table 1. This implies θ =

−0.417. For a sense of magnitude, this implies that the expected match ability is 95

percent of the ability of the average operating firm. Matches are slightly worse than

random draws from the operating firm distribution.

3.3.2 Calibration of Remaining Parameters

We next calibrate the remaining parameters conditional on the already-estimated

diffusion parameters. Since the diffusion parameters do not make use of any of the
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Table 1: Moments for Diffusion Parameter Estimation

(1) (2)

β 0.538
(0.273)**

ρ 0.595
(0.273)**

Treatment 891.990
(280.720)***

R2 0.053 0.047
Control Avg – 1897.851

Table notes: Standard errors are in parentheses. The top and bottom one percent of dependent variables are trimmed.
Statistical significance at 0.10, 0.05, and 0.01 is denoted by *, **, and, ***.

remaining parameters of the model, we do not need to adjust them based on what we

calibrate here. We make use of the baseline field data that is a representative sample

of firms in Dandora, Kenya to calibrate to the local economy.

We assume both exogenous shock processes are lognormal, so that new entrants

draw from G ∼ logN(µ0, σ0) and existing firms from F ∼ logN(µ, σ). We normalize

µ0 = 0. We note that the drift in the ability law of motion c and the mean of the

exogenous shocks for existing firms, µ (from c.d.f. F ), are not separately identified.

We set µ = −σ2/2 so that E[eε] = 1. This leaves 8 remaining parameters.14

The remaining 8 parameters can be broken into two groups. The first group is

matched one-to-one with a given moment or value (δ, σ0, ν). The death rate δ is set

average age of population in the study, which is 34.15 The standard deviation of new

entrant ability matches the variance of log profit for firms that have been open for

less than 3 months, which implies σ0 = 1.00. Finally, we note that given the model

set-up the bargaining power of firms in its supplier negotiation (ν) has no effect the

results. Thus, we set it as ν = 0.5 for simplicity.

This leaves 5 parameters – σ, c, ω, α, and η – which we target to jointly hit 5

moments. While jointly calibrated, each has an intuitive counterpart. We choose σ

to match the standard deviation of log profit in the economy, equal to 0.99. The drift

parameter c in ability is targeted to match the average profit of all firms relative to

those who entered less than one year ago (1.51). The utility parameter ω is set to

match the share of employment in wage work. The most recent Kenyan census (via

IPUMS, 2020) implies that 48 percent of employment in Embakasi Constituency (the

local area in Kenya that includes our study site) is in wage work.

14On the utility side, they include the relative weight of consumption ω and the agent death rate δ. The remaining
parameters dealing with technology and ability evolution are the parameters α and η, the ability growth term c, and
the standard deviations of the exogenous shocks σ0 and σ. The final parameter is the bargaining weight ν.

15The constant death rate δ implies a geometrically distributed age distribution with mean 1/δ and, assuming a
new agent is 18 years old, implies an average age of 64 quarters in the model. We match actual age rather than age
of the firm because agents can move between firm operation and wage work during their lifetime.
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α and η are then set to match two moments. The first is the standard deviation

of the log unit intermediate cost across firms. After removing industry fixed effects

that may bias those estimates, the standard deviation in the data is 1.61. The second

moment is the wage bill relative to intermediate spending. The average firm at

baseline has a ratio of 0.13. Our Cobb-Douglas assumption implies that wn/pxx =

η/α, so we set η = 0.13α. The standard deviation of intermediate cost is then exactly

pinned down by the cost ratio and the variability in log profit. This follows from the

fact that Proposition 1 implies σlog(px) =
(

1−α−η
α

)
σlog(π). Plugging η = 0.13α yields

α =
σlog(π)

σlog(px)+1.13σlog(π)
.

The complete list of moments and parameter values are in Table 2.
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Table 2: Targets and Parameter Choices

Model Parameter Description Parameter Target Moment Source Target Model
Value Value Value

Group 1 Diffusion Block from RCT
β Intensity of diffusion 0.538 Estimated parameter from regression (5.5) RCT results 0.538 0.538
ρ Persistence of ability 0.595 Estimated parameter from regression (5.5) RCT results 0.595 0.595
θ Match technology “quality” -0.417 Treatment effect in quarter 2 (as % above control) RCT results 0.403 0.403

Group 2 Matched one-to-one with parameter

δ Death rate of firms 0.016 Average age of baseline business owners Baseline survey 0.09 0.09
σ0 St. dev. of new entrant ability distribution 0.961 Variance of log profit among new entrants Baseline survey 1.00 1.00
ν Firm bargaining weight 0.50 Set exogenously – – –

Group 3 Jointly targeted

σ St. dev. of exogenous ability shock distribution 0.75 Standard deviation of log profit in all firms Baseline survey 0.99 0.99
c Growth factor in ability evolution -1.92 Ratio of average profit of all firms to new entrants Baseline survey 1.51 1.51
ω Consumption utility weight 0.53 Fraction of employment in wage work IPUMS 0.48 0.48
α Ability elasticity in supplier search 0.36 Standard deviation of log inventory cost Baseline survey 1.61 1.61
η Ability elasticity in supplier search 0.05 Average cost ratio Baseline survey 0.13 0.13

Table notes: Group 1 is jointly chosen from the experimental data. Group 2 are also set to match baseline data moments, but match 1-1 with target
moments. Parameters in Group 3 are calibrated to jointly match moments.
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3.4 Dynamic Treatment Patterns

Our calibration does not use the full time series of the average treatment effect, only

the data before and the first period after treatment. Before turning to the quantitative

results we ask if the model can replicate the observed pattern. Figure 2a replicates

the time series of the ATE over 5 quarters in the model. The first two quarters

are matched by construction. Both the model and data predict no treatment effect

by t = 3. The model under-predicts the effect in t = 2 so, if anything, the model

understates the partial equilibrium RCT dynamics.

Figures 2b and 2c show how the diffusion parameter estimates β and ρ inform our

model prediction. If we instead estimated a high knowledge persistence (high ρ) and

low ability to learn (low β), we could have instead predicted a 20 percent treatment

effect at t = 5. Thus, the parameter estimates from the RCT put discipline on the

fade-out pattern we predict from the model.

Figure 2: Relationship between Treatment Persistence and Diffusion Intensity β

(a) Baseline Model vs Data
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As we will discuss below, the parameter β is critical for generating general equi-

librium gains from diffusion. Yet higher β also hastens fade-out. An immediate con-

sequence of the results here is that treatment effect persistence need not be positively

correlated with the equilibrium gains that could be achieved at scale. This difficulty

in linking average treatment effect moments to at-scale equilibrium implications is a

theme we will revisit in the quantitative results as well.

4 Quantitative Results

With the calibrated model in hand, we now turn to quantitative results. The goal

is to understand the equilibrium implications of better matching technologies. We

do so by varying θ. The intervention discussed in Section 2, along with those in

the introduction, suggest that at least part of the meeting frictions we impose via θ

are policy-malleable. We think of this exercise as measuring the gains available to

a policymaker who adjusts this parameter by making it easier to find high-quality

matches.

4.1 Impact of Better Matches in Equilibrium

Quantitative Experiment We implement our “better matching equilibrium” by shock-

ing θ so that it moves 25 percent closer to its limit of θ = 1. This increases baseline

θ = −0.417 to θnew = −0.063.16 We study the long run, general equilibrium change

in income that results by comparing the two stationary equilibria.

Quantitative Outcomes Aggregate moments are reported in Table 3. The first col-

umn is the baseline economy (θ = −0.417) with aggregate moments from the station-

ary equilibrium normalized to one. The second column presents a new equilibrium

with θnew = −0.063 but fixes the wage at the baseline level. Column three allows the

wage to adjust as well.

Overall, income rises by 11 percent. This is made up of two general equilibrium

effects. The first is that the new matching technology directly affects the ability

distribution by making it easier to learn from high ability agents. The second is an

amplification effect through prices.

16The choice of 25 percent is somewhat arbitrary, but also irrelevant for our results net of some differences in
magnitudes. In practice, policy changes are often motivated by experiments but are not exact replications for admin-
istrative reasons. We think of this as a policymaker creating a program that has the same spirit as the smaller scale
intervention. This could be through extension programs, better use of information technology, or explicit mentoring
programs, among others. Regardless, in the Appendix we provide the results when the aggregate policy exactly
replicates the estimated RCT gains. The same results hold with larger magnitudes.
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Table 3: Equilibrium Moments

(1) (2) (3)

Baseline Fixed Wage New Equilibrium

Income 1.00 1.07 1.11

Ability 1.00 1.08 1.12

Aggregate Wage-Labor Supply 1.00 0.92 0.98

Wage 1.00 1.00 1.13

Table notes: Column (1) is the initial equilibrium, normalized to one. (2) and (3) report the new
stationary equilibrium after shocking the matching technology, where (2) holds the wage fixed at its
baseline level and (3) allows it to adjust.

We decompose the relative importance of these two channels in columns 2 and

3. Column 2 isolates the direct effect on ability. Average ability rises by 7 percent

and the labor supply declines by 8 percent as the distribution shifts mass across

the (fixed) cut-off ability level that defines occupational choice (see Proposition 1).

Average income rises by 7 percent.

Column 3 allows the equilibrium wage to adjust. The wage increases by 13 percent

as the ability to find lower-cost suppliers increases the marginal product of labor. This

competitive pressure causes the lowest z firms to exit and work for a wage instead.

Removing relatively low quality firms allows for easier learning. This amplifies the

direct effect on ability through the diffusion process.

Of the total increase in ability, 67 is from the direct effect and 37 is from the

amplification through prices. A similar magnitude holds for income: 64 percent is

from the direct effect, while 36 is through the price adjustment.

4.2 How much discipline does the ATE provide?

The average treatment effect is often used to determine the success of an intervention.

A separate, but related, issue is whether or not it disciplines the gains that could be

achieved at scale. In this section, we show how the various moments from the RCT

jointly provide discipline to the quantitative results, and how their relative importance

differs. The main result here is that heterogeneity across treated agents matters more

than the average impact.

To investigate the importance of the average treatment effect, we fix it at the real-

ized empirical level ATEdata and continue to use it to discipline the model. However,

instead of using the within-treatment heterogeneity to estimate β and ρ, we simply

assume values for them and ask how the results change. Thus, the model will remain

consistent with our observed ATE but not with the covariance within the treatment.

19



Practically, this requires re-estimating θ given the (counterfactual) values of β and

ρ. We then re-compute the gains by increasing θ by 25 percent from each baseline

value.

Results Figure 3a shows the implied θ for each assumed (β, ρ) combination. Coun-

terfactually lower β and ρ require a lower θ to match ATEdata. Intuitively, what this

means is that firms now gain little from a good match. To match the observed average

treatment effect, the model requires that the treatment is more valuable to firms. It

does so by inferring control firms receive worse baseline matches. This increases the

difference in average match quality between the fixed treatment and control firms,

guaranteeing the the treated firms gain more. Put more succinctly, the model trades

off intensive margin gains for extensive margin gains.

Figure 3b shows the aggregate gains from a 25 percent increase in matching qual-

ity. Average income increases anywhere between 0.6 to 38 percent, a 63-fold range, by

varying only the importance of (β, ρ) relative to θ for the same ATE. There are two

main takeaways here. First, even conditional our observed ATE, the model could have

predicted either very small or very large equilibrium gains. Thus, there is nothing

specific about our model that guarantees one or the other; it depends on which way

the empirics push the parameters. Second, a large amount of the discipline on the

equilibrium gains comes from moments other than the average treatment effect. It

depends critically on additional moments derived from how the intervention’s impact

varies across individuals in the treatment group.

A different way to see this result is to ask which average treatment effects are

consistent with an 11 percent increase in aggregate income. To do so, we replicate the

same exercise above for every average treatment effect between 0.01 and 70 percent.

That is, we assume parameters (β, ρ) then choose θ to match the relevant ATE. The

results are in Figure 4. The previous results, in Figure 3 are a vertical slice of this

figure. That is, the observed ATE pins down a vertical slice of this band of outcomes,

where the width of the band is given by how the results vary for (β, ρ) combinations.

The main takeaway from Figure 4 is that our 11 increase in income is consistent with

nearly any average treatment effect.

Overall, the results show that caution is required when attempting to extract

policy recommendations from empirical moments here. We offer a way to estimate

different empirical moments that help guide the mapping from observed treatment

effects to the gains that can be achieved at scale. We next turn to understanding why

certain moments matter more than others.
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Figure 3: Aggregate Implications of Varying (β, ρ) at Baseline ATE

(a) Implied θ (b) Aggregate Gains

Figure notes: For each value of (β, ρ), (a) plots the implied θ that guarantees the model hits our
baseline ATE. (b) then plots the implied aggregate gains from scaling the intervention as a percentage
change in average income from the baseline equilibrium (i.e., 0.4 = 40%).

Figure 4: Relationship between average treatment effect and equilibrium increase in income
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Figure notes: The shaded region shows all possible realizations of aggregate gains that can be achieved while holding
the average treatment effect fixed by re-estimating the extensive margin parameter θ for each (β, ρ) combination.
Multiply by 100 for percentage gains.

4.3 Understanding the Quantitative Importance of Covariance

We next turn to understanding these results, in particular, why β – governed by

covariance – plays such a large quantitative role relative to θ – governed by the

average effect. Our main conclusion is that the micro and macro returns are driven

by different parameters.

We start by varying θ and β, holding the remaining parametrization fixed.17 We
17We omit ρ in the interest of clarity, as β plays a larger role. A similar pattern emerges for ρ, though with smaller
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the measure the relevant micro and macro moment. On the micro side, we measure

the average treatment effect from re-running our RCT in the model at these counter-

factual parameters. On the macro side, we conduct the same quantitative experiment

as above. The results are in Figure 5.

Figure 5: Variation at RCT and Aggregate Levels by Parameters
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Figure notes: Each figure varies the listed parameter while holding the remaining parameterization
fixed at its baseline value. “RCT” is the implied average treatment effect, while “Aggregate” is the
gains from scaling the intervention as defined in the text. Results are presented as growth rates
g := (E[ypost]/E[ypre]) − 1, then normalized relative to our baseline parameterization as g/gbaseline

so that all lines cross through 1.

Two patterns emerge that show why the ATE offers little discipline on the quanti-

tative results. First, the model-implied ATE responds strongly to changes in θ. This

means that over reasonable empirical levels of the average treatment effect, there is

limited scope for θ to vary. For example, Figure 5a shows that if ATEdata ∈ (0, 100%),

then θ needs only to vary within θ ∈ (−0.5, 0.5) to match it. Therefore, if the ATE

is to play a major role, it must be that the equilibrium gains vary substantially over

a small range of θ. Figure 5 shows this is not the case; the equilibrium gains respond

much more strongly to variation in β.

Put together, we get back to our previous result: the equilibrium gains vary

widely for a given ATE because the micro-level and equilibrium gains are driven

quantitatively by different parameters in the model.

The rationale is as follows. The equilibrium amplification of learning is closely

connected to the mass of agents in the right tail, as heavier-tailed distributions facil-

itate more learning. β governs this here. To see this, Figure 6 plots how the ability

distribution responds to the improved source distribution under changes for β and,

magnitudes.
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for comparison, θ. Figures (a) and (b) plot the survival function 1 −M(z), or the

fraction of the population whose ability is larger than z. Both axes are measured in

logs. We do so under our baseline parameterization, then also vary β and θ to make

them 50 percent closer to their theoretical maximum of one.18 Figure 6c shows how

the difference varies for each of these two parameters.

Figure 6: Equilibrium Survival Function as Parameters Change
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Figure notes: Figures (a) and (b) plot the ability distribution at the baseline and improved matching
technology, measured as the log survival function. Figure (c) plots the difference in the mass across
the ability distribution. This is measured as the difference-in-difference of the curves plotted in
(a) and (b). That is, denoting S = log(1 − M(z)) as the log survival function, it plots ∆S =
(Snewx′ − Sbasex′ )− (Snewx − Sbasex ) where x ∈ {θ, β} and x′ is the counterfactually higher level of that
parameter.

18That is, we increase β to 0.769 because (1-0.769)/(1-0.538) = 0.5. We similarly increase θ.
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This ability of the learning technology to push agents into the tail is what co-

variance measures in the experiment. It takes a fixed set of matches and measures

how much larger the impact is for a relatively better match. The overarching conclu-

sion here is that estimating aggregate effects requires understanding and estimating

the parameters that align with the aggregate economic forces in the model. Re-

latedly, these results show that the aggregate importance of this policy change is

not predetermined by the model. We could have predicted smaller effects with simple

changes in parameter values. The discipline provided by the empirical moments plays

a critical role and highlights the complementarity between the aggregate model and

well-identified causal effects.

5 Broader Lessons for Understanding RCT Gains at Scale

While we focus on one specific RCT to fix ideas, Brooks et al. (2018) is part of

a broader set of RCTs that create random learning opportunities for firm owners.

Moreover, the promising results of these RCTs have been used as evidence for large-

scale policy decisions (e.g., World Bank, 2020). In this final section, we take a step

back to probe whether our results provide any more general guidance on measurement

in these types of partial equilibrium RCTs, or whether they are driven by the exact

model we write down or the exact intervention we use.

We ask specifically whether we can use the same moments to pin down the same

diffusion parameters in a broader class of models and interventions. To do so, in

this section we lay out sufficient conditions that guarantee the same procedure holds.

These conditions turn out to cover a wide range of potential models and interven-

tions. We begin by laying out the economic environment, then describe a class of

interventions as a data-generating process from the model.

5.1 Class of Models

Time is discrete, and there is a population of agents with ability z. We make three

assumptions on the economic environment. The first is how ability evolves.

Assumption 1. Given ability z this period, an imitation opportunity ẑ, and a random

shock ε, ability next period z′ is given by

z′(z, ε, ẑ) = ec+εzρ max

{
1,
ẑ

z

}β
, (5.1)

where the parameter c is a constant growth term, β is diffusion intensity, and ρ is

persistence. ε is uncorrelated with z and ẑ but not i.i.d. across agents.
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This assumption mirrors our technological assumption used in the model above. The

next two assumptions are on equilibrium outcomes of the model. The first relates

unobservable ability z to observable characteristics.

Assumption 2. In any period, equilibrium profit π is proportional to ability. For

any two agents i and j, πi/πj = zi/zj.

This result holds in our model in equilibrium. The critical feature in Assumption

2 is that there is some way to move between unobserved ability z and observable

characteristics. Thus, it is straightforward to allow more general relationships that

allow, for example, production function estimation. We take up extensions in the

Appendix.19

Finally, the third assumption puts characteristics on the source distribution from

which ẑ is drawn in equilibrium. We denote the cumulative density function of ẑ as

M̂(ẑ; z, θ). M̂ implies that different z agents can draw from different distributions

and those distributions depend on a technological parameter θ. The role of θ is

summarized in Assumption 3.

Assumption 3. The source distribution of imitation draws ẑ can be characterized in

equilibrium by a cumulative density function of the form M̂(ẑ; z, θ) with the following

properties:

1. For every z and ẑ, M̂ is continuous in θ

2. θ1 < θ2 =⇒ M̂(ẑ; z, θ2) first order stochastically dominates M̂(ẑ; z, θ1).

Our assumption, that M̂(ẑ; z, θ) = M f (ẑ)
1

1−θ , satisfies the continuity and FOSD re-

quirements. But Assumption 3 is broader than our specific assumption, spans search

models through pure assignment models, where θ measures the complementarity be-

tween abilities. We discuss various alternatives that fall under this assumption in the

Appendix.

Together, these 3 assumptions characterize diffusion in a variety of models, includ-

ing those summarized in Alvarez et al. (2008).20 It also includes the model developed

in Section 3.

19In addition, all of the results in this section are robust to the inclusion of unobserved idiosyncratic variation
via measurement error or distortions. These extensions build off an active literature on non-linear error-in-variables
models (see Schennach, 2020, for a thorough review).

20For example, Lucas (2009) follows by setting β = ρ = 1, c = 0, and making F degenerate (a special case of

Assumption 1), setting π = z (Assumption 2) and assuming M̂(ẑ; z, θ) = Mθ where M is the equilibrium c.d.f.
of ability and θ indexes the number of draws a firm receives each period (Assumption 3). Buera and Oberfield
(2020)’s delineation between random, original innovations and learning from others is a particular interpretation of
θ in Assumption 3. More examples, including those that move away from random meetings, are included in the
Appendix.
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5.2 Class of Interventions that Facilitate Better Matches

We now define a data-generating process that covers a class of interventions including

the Brooks et al. (2018) RCT discussed in Section 2, but also includes Atkin et al.

(2017), Cai and Szeidl (2018), Lafortune et al. (2018), and Fafchamps and Quinn

(2018), among others.21,22

An important consideration as we generalize away from the specifics of Brooks et

al. (2018) is the difference between an imitation opportunity and an individual in the

model. In our work above, they are the same. That is, if person i meets with person

j, i’s imitation opportunity is ẑi = zj. But these are separate notions. If, for example,

i meets with a group of agents j1, . . . , jN and receives the average knowledge of those

N firms, i’s imitation opportunity is ẑi = (1/N)
∑N

k=1 zjk .

With that in mind, we formally define the data generating process in Assumption

4.

Assumption 4. A set of agents with profit Hπ(π) are observed in two consecutive

periods. That set is partitioned into two subsets C and T (i.e., “control” and “treat-

ment”), characterized by their profit distributions HC,π(π) and HT,π(π). The following

conditions hold:

(a) The average unobserved shock for agents in T and C are equal.

(b) We cannot observe the imitation opportunity agents in C. They are drawn from

a distribution M̂π(π̂; π, θ).

(c) We observe the imitation opportunity for agents in T. The distribution of those

profits are denoted ĤT,π(π̂) 6= M̂(ẑ; z, θ). Furthermore, a positive measure of

agents interacts with a more profitable match.∫
π

∫
π̂

1[π̂ > π]dĤT,π(π̂)dHT,π(π) > 0.

(d) For any arbitrary partition of T, characterized by H1
T,π(z) and H2

T,π(z), agents

in both groups draw their ε shocks from the same distribution

Assumption (a) is the usual exclusion restriction. It puts restrictions on how the

unobserved characteristics vary between control and treatment. (b) formalizes the

21Experimental variation is not critical. Any instrument or instruments that satisfy Assumption 4 will apply
similarly. Most available evidence comes from randomized controlled trials here, so we generally focus discussion in
those terms.

22Note that Assumption 4 is not designed to be an idealized experiment to estimate a diffusion model. One could
easily develop a more useful experiment than we assume here. This is not our goal. Our goal is develop a link from
existing work to the models discussed in Section 5. Assumption 4 is the formalization of the way in which we tie our
hands to a particular type of variation.
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intuitive notion that we cannot observe individual-level control matches, but that

matches continue to happen in the background of the economy. That is, the control

group does not stop meeting other agents because of the intervention.

Assumptions (c) and (d) lay out what we require from the treatment. The treat-

ment shocks the source distribution from M̂ to ĤT . The last assumption states a

second exclusion restriction within the treatment group, guaranteeing that a compar-

ison between treated firms is similarly unbiased.

5.3 The Need for Additional Moments and Identification

Our goal is to estimate three key parameters, β, ρ, and θ. As one might suspect, it

would be impossible to estimate all three a single average treatment effect moment.

We show first that it is even more dire than that, because there almost always exists a

way to rationalize a given ATE. To see this, define the ATE as the percentage change

in profit between firms in treatment and control,

ATEdata =
E[π′i|i ∈ T]

E[π′i|i ∈ C]
(5.2)

and the model’s counterpart as

ATEmodel =
ET [π′]

EC [π′]
=

∫ ∫
zρ max {1, ẑ/z}β dĤT (ẑ)dHT (z)∫ ∫

zρ max {1, ẑ/z}β dM̂(ẑ; z, θ)dHC(z)
. (5.3)

We summarize the relationship between the two in Proposition 2 with discussion

following. All proofs are in the Appendix.

Proposition 2. For a given pair (β, ρ) there is at most one θ such that ATEmodel =

ATEdata. If ATEdata ∈ [Γmin,Γmax] that θ exists, is unique, and solves

ATEdata =

∫ ∫
πρ max {1, π̂/π}β dĤT,π(π̂)dHT,π(π)∫ ∫

πρ max {1, π̂/π}β dM̂π(π̂; π, θ)dHC,π(π)
. (5.4)

If ATEdata /∈ [Γmin,Γmax] then no such θ exists. The bounds are given by

Γmin = inf
θ

∫ ∫
πρ max {1, π̂/π}β dĤT,π(π̂)dHT,π(π)∫ ∫

πρ max {1, π̂/π}β dM̂π(π̂; π, θ)dHC,π(π)

Γmax = sup
θ

∫ ∫
πρ max {1, π̂/π}β dĤT,π(π̂)dHT,π(π)∫ ∫

πρ max {1, π̂/π}β dM̂π(π̂; π, θ)dHC,π(π)
.

Proposition 2 is a generalization of our estimation procedure in Section 3.3.2. It

formalizes that there are a continuum of economies that generate identical ATEs,
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and differ only in the importance of β and ρ relative to θ. While the proof is in the

Appendix, the intuition follows our discussion in the previous section. The extensive

margin of matching (governed by θ) can always be set to counteract the direct effect

of a match (governed by β and ρ).23 Bias in one dimension therefore creates bias

in the other, though remains consistent with the observed ATE. Yet we know from

Section 4 that aggregate outcomes are not independent of their relative importance.

However, if one can identify (β, ρ), then there is a unique θ corresponding to

ATEdata. The key insight here is that fixing exogenously the set of treatment draws

allows us to infer what must be happening to control firms, if we already know how a

given match affects knowledge. This is the part of the technology governed by β and

ρ. Identifying these parameters can be done with variation within treatment matches.

Proposition 3. The parameters (β, ρ) are identified by coefficients from the regres-

sion run only on treated agents (all i ∈ T)

log(π′i) = c̃+ ρ log(πi) + β log

(
max

{
1,
π̂i
πi

})
+ εi, (5.5)

where c̃ is the constant equal to the technological parameter c if π = z.

Like before, if π̂i > πi for all i ∈ T, then

β̂ =
cov(log(π′), log(π̂))

σ2
log(π̂)

.

That is, β̂ measures the covariance between a firm’s ex post profit and its match’s

ex ante profit, normalized by the match-level variation fed into the experiment ex-

ogenously. That same intuition holds continues to hold if π̂i < πi for some i, but

introduces the covariance matrix into β̂ to account for the collinearity of πi and

max{1, π̂i/πi}.24 Thus, this idea that we can measure additional moments that mat-

ter for at-scale gains in the empirics holds more broadly.

Propositions 2 and 3 provide a way to move between the intervention-level data

and diffusion parameters in a broad class of models. It requires two straightforward

linear regressions that can be run on the data collected from a class of partial equi-

librium experiments. Our interpretation of these results is the following. There is

substantial evidence that diffusion plays an important role in the development pro-

cess, derived from both micro and macro sources. Changing learning opportunities at

23This is true up to the bounds Γmin and Γmax. These bounds exist to guarantee that the treatment effect stays
within the set of values that the model can possibly rationalize.

24Assumption 4(c) – that a positive measure of agents benefit from the treatment – guarantees the independent
variable matrix in regression (5.5) has full rank, while Assumption 4(d) guarantees the parameter estimates are not
biased by unobservable shocks ε.
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scale requires understanding how to use these RCT estimates to build evidence. We

show that regardless of the specifics of the exact economy one has in mind, there exist

simple additional moments that can be measured in these RCTs that help discipline

what we should expect to find at scale.

5.4 Further Discussion and Additional Appendix Results

Before concluding, we discuss some additional theoretical and quantitative results

that are available in the Appendix.

In terms of the generalized procedure developed in Section 5 to determine diffusion

parameters, we show that there are additional features that can be added. First,

we allow a more general law of motion for ability which can be estimated semi-

parametrically with the same data generating process. Second, and relatedly, the

results can be extended to include heterogeneous returns by characteristics. Third,

we extend the results to a more general relationship between observables and ability

that allows for the integration of production function estimation. Fourth, we show the

procedure can be adjusted to include measurement error or idiosyncratic distortions

that affect the relationship between profit and ability, building off an active literature

on non-linear error-in-variables models (see Schennach, 2020, for a thorough review).

These various adjustments introduce important considerations and complications,

such as issues of power for non-parametric estimation or the introduction of the

required deconvolution methods to deal with measurement error. The underlying

economic intuition holds without much change however, and we focus in the main

text on this relatively parsimonious set of parameters for this reason.

In terms of the quantitative results in Sections 3 and 4, we also add a number

of extensions in the Appendix. First, we quantify the bias induced by mis-measured

profit. Our results are a lower bound on the equilibrium gains. Idiosyncratic dis-

tortions or non-deterministic supplier search naturally generate a similar, but not

identical, result. Second, we solve the social planner’s problem to study the gains

that could be achieved by transitioning the economy to its efficient allocation. We

find that welfare gains are largest at intermediate levels of β. The results deliver a

similar message as the main text: measuring the various forces that inform aggregate

gains is critical. Third and finally, we use the work of Cai and Szeidl (2018) to apply

our results to a different experiment. This experiment offers a useful comparison to

our results in the main text: they find that gains from matches persist longer than

in our baseline RCT, and also provide direct evidence of diffusion within matches.

We replicate the persistence of their treatment effect. The reason is because our es-

timation procedure infers different parameters from different patterns of covariance
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within treated firms.

6 Conclusion

We develop a model to study the cost of frictions that limit potentially profitable

interactions between firms. We discipline the model by linking it to a promising set

of micro-level interventions that offer these same opportunities at a smaller scale.

Using evidence from an RCT in Kenya, we find that equilibrium income rises by

11 percent off an average treatment effect of 19 percent. The discipline on that 11

percent increase in income comes primarily from moments other than the average

treatment effect. Our results point to other moments that do. In particular, we

show that a covariance moment plays a critical role in generating equilibrium gains

at scale. This moment can be estimated with partial equilibrium RCT results, thus

providing policy-relevant information on scalability. The results highlight the impor-

tant complementarity between causal interventions and aggregate models (Buera et

al., 2022).

That is not to say this single additional moment captures everything that matters

for aggregate outcomes. This depends on the exact specifics of the economy. We

leave out interesting features that may arise, such as the possibility that firms be-

come unwilling to share information due to competition, though some simple version

of such theories are feasible under our framework (see the Appendix for an example of

bargaining over match surplus). One could of course always write down a more com-

plicated model with such a feature. That part is easy. But more parameters demand

more empirical moments if the goal is to estimate this process with a methodology

similar to our diffusion parameter estimation. This requires more subtly and targeted

variation in designing interventions. Different field experiments, designed with an eye

toward aggregate theory, could further refine our understanding of key aggregates

governed by a number of difficult-to-measure elasticities that affect diffusion at scale.
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Consulting: The Impact of Personalizing Micro-entrepreneurship Training,” Amer-

ican Economic Journal: Applied Economics, 2018, 10 (4), 222–245.

32



Lagakos, David, Ahmed Mushfiq Mobarak, and Michael E. Waugh, “The

Welfare Effects of Encouraging Rural-Urban Migration,” January 2021. Working

Paper.

and Martin Shu, “The Role of Micro Data in Understanding Structural Trans-

formation,” Oxford Development Studies, forthcoming, 2022.

Lashkari, Danial, “Innovation Policy in a Theory of Knowledge Diffusion and Se-

lection,” 2020. Working Paper.

Lucas, Robert E., “Ideas and Growth,” Economica, 2009, 76 (301), 1–19.

and Benjamin Moll, “Knowledge Growth and the Allocation of Time,” Journal

of Political Economy, 2014, 122 (1), 1–51.

Munshi, Kaivan, “Information Networks in Dynamic Agrarian Economies,” in T.

Paul Schultz and John Strauss, eds., Handbook of Development Economics, 2008,

pp. 3086–3112.

Muralidharan, Karthik and Paul Niehaus, “Experimentation at Scale,” Journal

of Economic Perspectives, 2017, 31 (4), 103–124.

Perla, Jesse and Christopher Tonetti, “Equilibrium Imitation and Growth,”

Journal of Political Economy, 2014, 122 (1), 52–76.

, , and Michael E. Waugh, “Equilibrium Technology Diffusion, Trade, and

Growth,” American Economic Review, 2021, 111 (1), 73–128.

Romer, Paul M., “Endogenous Techniological Change,” Journal of Political Econ-

omy, 1990, 98 (5), S71–S102.

Schennach, Susanne M., “Mismeasured and unobserved variables,” in Steven N.

Durlauf, Lars Peter Hansen, James J. Heckman, and Rosa L. Matzkin, eds., Hand-

book of Econometrics, 2020, pp. 487–565.

Wallskog, Melanie, “The Mechanisms and Implications of Entrepreneurial

Spillovers Across Coworkers,” 2021. Working Paper.

World Bank, “Project Appraisal: Proposed Credit in the Amount of SDR 62.7

Million (US$86 Million Equivalent) to the Republic of Malawi for a Financial In-

clusion and Entrepreneurship Scaling Project,” 2020. World Bank Report Number

PAD3415.

33



Table of Contents for Online Appendix

A Additional Details from the Main Text 36

A.1 RCT: Baseline Profit Distributions . . . . . . . . . . . . . . . . . . . . . 36

A.2 RCT: Balance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.3 RCT: Empirical Impact on More Productive Member of the Match . . . 36

A.4 Model: Increasing θ to match RCT treatment effect . . . . . . . . . . . . 40

B Additional Evidence on Diffusion from Second RCT 41

B.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B.2 Empirical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

C Examples of Different Matching Processes 44

C.1 Noise in the Imitation Process . . . . . . . . . . . . . . . . . . . . . . . . 44

C.2 Effort Choice and Bargaining . . . . . . . . . . . . . . . . . . . . . . . . 44

C.3 Deterministic Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 45

C.4 Cost to Receive a Match . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

D Extensions of Diffusion Parameter Identification 48

D.1 Semi-parametric identification . . . . . . . . . . . . . . . . . . . . . . . . 48

D.2 More general relationship between observables and z . . . . . . . . . . . 48

D.3 Mis-measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

D.4 Additional characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 51

E Characterizing the Efficient Allocation from the Social Planner’s

Problem 52

E.1 Quantitative Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 54

F Quantitative Implications of Mismeasurement 60

F.1 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

F.2 Updated Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

F.3 Quantitative Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

G Implementing the Same Procedure in the RCT of Cai and Szeidl

(2018) 64

G.1 RCT Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

G.2 Overview of Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . 64

34



G.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

G.4 Estimating Diffusion Parameters . . . . . . . . . . . . . . . . . . . . . . 68

G.5 Remaining Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

G.6 Treatment Effect Persistence . . . . . . . . . . . . . . . . . . . . . . . . 72

G.7 Quantitative Gains at Scale . . . . . . . . . . . . . . . . . . . . . . . . . 73

H Proofs 75

H.1 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

H.2 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

H.3 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

H.4 Proof of Proposition 7 (from Social Planner’s Problem) . . . . . . . . . . 78

35



A Additional Details from the Main Text

A.1 RCT: Baseline Profit Distributions

Figure 7: Baseline Profit Distributions
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A.2 RCT: Balance Tests

Our basic balance check is

yi0 = α0 + α1Ti + εi,

where yi0 is the baseline outcome for individual i and Ti = 1 if i is eventually

treated. Those results are in Table 4.

We conduct the second balance test

yi0 = α0 +
∑

j=L,M,H

αjTij + εi

where the indicator now depends on whether firm i is a treatment firm matched with

a bottom 25th percentile (denoted MiL), 25-75 percentile (TiM), or top 25 percentile

firm (TiH) in terms of baseline profitability.25 Table 5 reports the results. The only

significant difference is in age, and the magnitude is small.

A.3 RCT: Empirical Impact on More Productive Member of the Match

Since the more productive members of treatment matches were not randomly selected,

we require a different approach to identify any effect on these business owners. Brooks

25We have experimented with a number of different ways to compute the balance table, and all show the same
results.
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Table 4: Balance Test from (from Brooks et al., 2018)

Control Mean Mentor - Control
(1) (2)

Firm Scale:
Profit (last month) 10,054 -975.25

(1186.76)

Firm Age 2.39 -0.05
(0.23)

Has Employees? 0.21 -0.02
(0.05)

Number of Emp. 0.21 0.02
(0.06)

Business Practices:
Offer credit 0.74 -0.02

(0.06)

Have bank account 0.30 -0.03
(0.06)

Taken loan 0.14 -0.05
(0.04)

Practice accounting 0.11 0.00
(0.04)

Advertise 0.07 0.04
(0.03)

Sector:
Manufacturing 0.04 -0.03

(0.02)

Retail 0.69 0.03
(0.06)

Restaurant 0.14 -0.02
(0.05)

Other services 0.17 0.06
(0.05)

Owner Characteristics:
Age 29.1 -0.25

(0.64)

Secondary Education 0.51 -0.00
(0.06)

Table Notes: Columns 1-2 are the coefficient estimates from the regression yi = α + βTi + εi, where Ti is an indicator for

treatment. Column 1 is α̂. Statistical significance at 0.10, 0.05, and 0.01 is denoted by *, **, and, ***.

et al. (2018) details these results, but Figure 8 reproduces some key results for sim-

plicity’s sake. Figure 8 suggests no statistically discernible discontinuity around the

cutoff.

We next test this more formally. In particular, letting ε be the cut-off value for

mentors, we run the regression

πi = α + τDi + f(Ni) + νi (A.1)
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Table 5: Balancing Test at Baseline

Control Mean TL - Control TM - Control TH - Control
(1) (2) (3) (4)

Firm Scale:
Profit (last month) 10,054 -732.65 -1337.06 -760.08

(1314.56) (1393.38) (2128.41)

Firm Age 2.39 0.04 -0.19 0.08
(0.28) (0.30) (0.46)

Has Employees? 0.25 -0.10 -0.07 0.10
(0.07) (0.07) (0.11)

Number of Emp. 0.23 -0.05 0.00 0.18
(0.08) (0.08) (0.13)

Business Practices:
Offer credit 0.74 -0.07 0.04 -0.03

(0.07) (0.08) (0.12)

Have bank account 0.30 -0.04 -0.05 0.06
(0.07) (0.08) (0.12)

Taken loan 0.14 -0.07 -0.06 0.03
(0.05) (0.05) (0.08)

Practice accounting 0.01 -0.01 0.01 -0.01
(0.01) (0.02) (0.02)

Advertise 0.07 0.04 0.01 0.11
(0.05) (0.05) (0.07)

Sector:
Manufacturing 0.04 -0.02 -0.04 -0.04

(0.02) (0.03) (0.04)

Retail 0.69 -0.03 0.00 -0.10
(0.08) (0.08) (0.12)

Restaurant 0.14 -0.06 0.00 0.03
(0.05) (0.06) (0.09)

Other services 0.17 0.09 0.02 0.07
(0.06) (0.07) (0.10)

Owner Characteristics:
Age 29.1 0.92 -1.88 0.50

(0.79) (0.84)∗∗ (1.28)

Secondary Education 0.51 0.02 -0.08 0.13
(0.08) (0.09 (0.13)

Table notes: Columns 1-4 are the coefficient estimates from the regression above, with column one being the estimate of the
constant α̂0. Statistical significance at 0.10, 0.05, and 0.01 is denoted by *, **, and, ***. All constants are significant at one
percent.

where πi is profit, Di = 1 if individual i was chosen as a mentor (ε̂i ≥ ε, f(Ni) is

a flexible function of the normalized running variable Ni = (ε̂i − ε)/σε, and νi is

the error term. The parameter τ captures the causal impact of being chosen as a

mentor. We use local linear regressions to estimate the treatment effects on profit and

inventory, along with business practices of record keeping and marketing. The results

are in Table 6, and we find that being a mentor has no statistically significant effect on

profits. Moreover, there is no change in marketing or record-keeping practices, which
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Figure 8: Profit for mentors and non-mentors (from Brooks et al., 2018)
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Figure notes: Figure 8 plots profit along with a fitted quadratic and its 95 percent confidence interval. Figure 8a
uses the entire sample, while Figure 8b uses the Imbens and Kalyanaraman (2012) procedure to choose the optimal
bandwidth. Both use 15 bins on either side of the cutoff.

one might associate with ability. There is some evidence that inventory spending

decreases, but it cannot be statistically distinguished from zero. Overall, we find

little evidence that entering into a match changes either business scale or business

practices for the more productive member of the match. This is consistent with the

max function in the forward equation for ability (equation 5.1), which is assumed here

and in much of the existing literature.

Table 6: Regression discontinuity results for matched firm treat-
ment effect (Brooks et al., 2018)

Percent of IK Scale Practices

optimal bandwidth Profit Inventory Marketing Record

keeping

100 -503.18 -3105.87 0.01 0.02

(1321.82) (2698.11) (0.11) (0.18)

150 300.19 -2585.22 0.01 0.07

(1407.26) (2291.34) (0.09) (0.14)

200 322.09 -123.59 0.01 0.10

(1324.17) (1964.08) (0.08) (0.13)

Treatment Average 4387.34 8435.79 0.08 0.85

Control Average 1794.09 4039.20 0.13 0.63

Table notes: Statistical significance at 0.10, 0.05, and 0.01 is denoted
by *, **, and, ***. Profit and inventory are both trimmed at 1 percent.
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A.4 Model: Increasing θ to match RCT treatment effect

In the main text, we increase θ from θ = −0.417 to θ = −0.063. We replicate

the results here under a different quantitative experiment: we increase θ such that

the policy change induces the same partial equilibrium effect in the model as in our

empirical results. Specifically, we create a treatment and control group identical to

our empirical RCT. We then shock the treatment group by allowing them to draw

from a new source distribution M̂(ẑ; θT ) instead of M̂(ẑ; θ). We set θT such that

running the RCT in the model delivers an identical treatment effect to our empirical

results.26 This implies that θ increases to θ = 0.512.

Table 10 replicates Table 3 from the main text under this different quantitative

experiment.

Table 7: Equilibrium Moments

(1) (2) (3)

Baseline Fixed Wage New Equilibrium

Income 1.00 1.35 1.59

Ability 1.00 1.38 1.67

Aggregate Labor Supply 1.00 0.63 0.90

Wage 1.00 1.00 1.76

Table notes: Column (1) is the initial equilibrium, normalized to one. (2) and (3) report the
new stationary equilibrium after shocking the matching technology, where (2) holds the wage
fixed at its baseline level and (3) allows it to adjust.

Overall, average income rises by 59 percent. When we decompose the aggregate

change, 57 percent of the total ability change comes from the direct effect on ability

(Column 2) and the remaining comes from the amplification through the wage. Sim-

ilarly for income, the direct effect accounts for 59 percent. The mechanisms for these

changes are discussed in the main text. Note, however, that these results point to a

larger role for price amplification (i.e., the price amplification accounts for 41 percent

of the average income gain here and 37 percent in the main text). This occurs because

the induced wage change is convex in the imposed θ change. Thus, the results point

to a larger role for price amplification as the aggregate policy change becomes larger.

26In the empirics, we let treated firms draw from the source distribution ĤT . The idea is the same, but does not

require the treatment source distribution to be in the same functional class as M̂ .
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B Additional Evidence on Diffusion from Second RCT

B.1 Theory

We begin with a simple, partial equilibrium model that highlights the distinction

between two models. The first is a model of “mentor as manager,” in the sense that

the mentor can replace the mentee’s ability in the mentee’s business. However, no

ability transfers from mentor to mentee. The second is a model of “diffusion,” in

which the mentor passes ability to the mentee. The model is developed here in a

simple, partial equilibrium way to highlight the test we run below.

An individual i is defined by baseline ability zi,t at period t. She then receives a

match, whose ability is ẑi,t. Both her initial ability and her match’s ability allow i’s

business to be more profitable at t. We define zei,t = g(zi,t, ẑi,t) as i’s effective ability

at time t and that zi,t+1 = zei,t. Her profit function is π(zei,t, ẑi,t).

Profit can increase either because i’s effective ability increases or because her

mentor is better. A better mentor enters into both arguments. The two models

are restrictions on derivatives of π and g. The “mentor as manager” model requires

g2(z, ẑ) = 0 and π2(ze, ẑ) > 0. These restrictions state that no knowledge of the match

transfers to the agent (g2 = 0), but that the match’s ability can directly increase

the firm’s profitability (π2 > 0). On the other hand, the diffusion model requires

g2(z, ẑ) > 0 and π2(ze, ẑ) = 0. These restrictions imply that the mentor can affect

profitability by transferring ability to the mentee (g2 > 0) but does not directly affect

firm profitability through, for example, managing the firm for the mentee (π2 = 0).

With these restrictions, we can derive some predictions that distinguish the two

models. First, however, notice that both models imply a positive treatment effect

from the random matching program described in the main text as long as π1 > 0.

With a slight abuse of notation, the realized profit π̃i,t is

∂π̃i,t
∂ẑi,t

=

π2(zei,t, ẑi,t) > 0 if mentor-as-manager

π1(zei,t, ẑi,t)g2(zi,t, ẑi,t) > 0 if diffusion.

The baseline experiment in the main text cannot directly distinguish these two models.

We now introduce an additional step in the intervention that allows us to distin-

guish them. Now, after i meets her match, i then goes on to mentor j at t+ 1. Then

we can write j’s match as ẑj,t+1 = zei,t = g(zi,t, ẑi,t) and her productive ability at t+ 1
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as zej,t+1 = g(zj,t+1, g(zi,t, ẑi,t)). Applying the definitions of π and g and taking some

derivatives yields

∂π̃j,t+1

∂ẑi,t
=

0 if mentor-as-manager

π1(zej,t+1, ẑj,t+1)g2(zj,t+1, ẑj,t+1)g2(zi,t, ẑi,t) > 0 if diffusion.

This result says something intuitive. If a match only affects contemporaneous profit,

then looking a match’s previous match should be irrelevant. This is the case of the

mentor-as-manager model. On the other hand, if some of i’s original match stays with

i, then original match quality ẑi,t shows up in j’s span of control.

On the other hand, both models predict that j’s profit πj,t+1 should correlate with

i’s initial ability zi,t because we allow for persistence in profit.

∂π̃i,t
∂zi,t

=

g1(zi,t, ẑi,t)π2(zej,t+1, ẑj,t+1) > 0 if mentor-as-manager

g1(zi,t, ẑi,t)π1(zej,t+1, ẑj,t+1)g2(zj,t+1, ẑj,t+1) > 0 if diffusion.

These results form the basis of our test.

B.2 Empirical Implementation

In part to test this idea, we conducted a second experiment in 2020 that follows the

procedure laid out above. We created initial, randomly-paired matches in Dandora

in the same way as the baseline experiment discussed in the main text. We then

randomly selected mentees to mentor randomly selected control firms after 6 months.

Mentees were only made aware of this second round matching program at the 6 month

mark. Their previous learning was therefore not influenced by their potential selection

into an eventual mentor role.

We refer to this second group of treated firms as the “RCT2 firms.” We tracked

RCT2 firms for 4 waves for 6 months, with the random matches occurring between

the first two waves.

We test between the two models with the regression run only on treated firms in

RCT2,

log(πi,t) = c̃+ β1 log

(
π̂1
i,0

πi,0

)
+ β2 log

(
π̂2
i,0

πi,0

)
+ γt + λi + εi,t. (B.1)
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Here πi,t is the profit of a firm treated in RCT2, π̂1
i,0 is the baseline profit of i’s

mentor and π̂2
i,0 is the baseline profit of i’s mentor’s mentor. That is, if k mentors j in

RCT1, then j mentors i in RCT2, π̂1
i,0 := πj,0 and π̂2

i,0 = πk,0. We allow for wave (γt)

and individual (λi) fixed effects to test robustness. The baseline values are from the

period before k mentors j. For robustness below, we also replace log(π̂1
i,0/πi,0) with

log(max{1, π̂1
i,0/πi,0}) and similarly for the second term.

The key test of the models is whether or not β̂2 > 0. That is, if our economic

environment is better characterized by the mentor replacing the span of control of the

mentee for the duration of the match, then π̂2
i,0 should have no predictive power for i’s

profit. The results are in Table 8 and we find substantial evidence that the original

mentor’s causes higher profit.

Table 8: Testing Two Models in New RCT

(1) (2) (3) (4)

Current mentor (β1) 0.162 0.256 0.336 0.483
(0.114) (0.111)** (0.002)*** (0.130)***

Mentor’s mentor (β2) 0.416 0.489 0.424 0.613
(0.100)*** (0.104)*** (0.078)*** (0.097)***

R2 0.468 0.470 0.404 0.619
Average of Outcome Variable 6.710 6.710 6.710 6.710
Include Indiv FE? N Y N Y

Table notes: Columns 3 and 4 replace the ratios in (B.1) with the max of the profit ratio and 1. Standard errors are in
parentheses. Statistical significance at 0.10, 0.05, and 0.01 is denoted by *, **, and, ***.

The first row (β1) of Table 8 shows that those with better mentors cause higher

profit, confirming the main text. The second row (β2) shows that conditional on that

baseline mentor quality, having a mentor whose own mentor was higher quality causes

higher profitability. This prediction is inconsistent with the “mentor as manager”-style

model and instead shows that profit-relevant ability is being transmitted between firms

in a match.
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C Examples of Different Matching Processes

In the main body of the paper, we provided two examples of matching processes that

fall under our assumptions, and we detail additional versions here.

C.1 Noise in the Imitation Process

An agent with ability z receives new arrivals of ideas that have two components: zm

that comes from a random match from another agent, and γ a random innovation

on that idea. Then ẑ = γ1/θzm. Here, zm is a uniform draw from the distribution of

productivities. Then if γ has a cumulative density function given by Γ, then:

M̂(c) = Prob(ẑ ≤ c) = Prob(zm ≤ cγ−1/θ) =

∫
M(cγ−1/θ)dΓ(γ) (C.1)

C.2 Effort Choice and Bargaining

Each period, every agent characterized by ability z is matched to an agent that owns

a potential imitation opportunity zm as a uniform draw from the distribution of oper-

ating firms M . The agent has an effort endowment of 1 that must be divided between

imitation and providing a utility benefit to the owner of the imitation opportunity

zm. If z ≥ zm, then no effort is put into imitation and ẑ = z. If zm > z, then the

agent and the owner of the imitation opportunity must first agree on the distribution

of effort, then the choice of effort x and the values of z and zm together generate the

value of ẑ for the agent in that period according to:

ẑ =
(zm
z

)x
z (C.2)

That is, by putting in more effort x ∈ [0, 1] the agent is able to close the gap

between their z and zm. The benefit to the owner of zm is given by the function b(x),

which is decreasing in x.

Agents and owners of imitation opportunities have one-off interactions and each

receive 0 benefit if no agreement is made. They bargain over the assignment of the

agent’s effort between imitation and utility benefits for the owner of the imitation

opportunity according to a Nash bargaining problem where the bargaining weight of

the agent is θ. The bargaining problem is:
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max
x∈[0,1]

([zm
z

]x
z
)θ
b(x)1−θ (C.3)

Suppose that b(x) is given by b(x) = 1− x. Then it is easy to show that:

x = max

[
0, 1− 1− θ

θ log(zm/z)

]
(C.4)

ẑ = max
[
z, zme

1−1/θ
]

(C.5)

As expected, the more bargaining power that the learning agents have, the greater is

x, resulting in greater ẑ.

Note that, in the model, draws of imitation opportunities ẑ < z are not useful.

Hence, the distribution M̂ can be written, for any value c, as:

M̂(c) = Prob(ẑ ≤ c) = Prob(zme
1−1/θ ≤ c) = Prob(zm ≤ ce1/θ−1) = M(ce1/θ−1)

(C.6)

or following the notation more standard in the paper:

∀z, M̂(ẑ; z, θ) = M(ẑe1/θ−1) (C.7)

C.3 Deterministic Assignment

Here we consider a case where M̂ arises when all agents can interact with one another

and sort into relationships endogenously. Suppose that every agent with ability ẑ has

the option to influence any other agent that has ability z. Every agent can only be

influenced by one other agent each period, and they always prefer to be influenced by

the highest ability possible.

The utility of an agent with ability ẑ influencing an agent with ability z is given

by:
ẑ

z
− 1− 1

2θ

(
ẑ

z
− 1

)2

(C.8)

That is, the agent with ẑ gains benefit in proportion to how large the benefit is

for the other agent, but their cost is quadratic in the distance between their produc-

tivities. For example, the influencer is happy when the other agent is helped by their

influence, but it takes more effort to influence when the distance between them is

great. Therefore, if there is a continuous distribution of z < ẑ, the ideal agent that
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the influencer would like to interact with has ability:

z∗(ẑ) = ẑ/(1 + θ) (C.9)

That is, the lower is the cost of influencing low ability firms, the deeper into the left

tail of the distribution is the agent willing to go.

However, since every agent can only be influenced by one agent each period and

they strictly prefer to be influenced by agents of higher ability, it is possible that

(even if the distribution is continuous) that the ideal agent for ẑ is already matched to

another influencer. Therefore, intuitively, the probability distribution over assignment

between ẑ and z is constructed by starting at the upper support of the distribution

M , allowing the highest ability firms to choose their most preferred matches, then

descending down through the distribution letting each firm choose to influence its

preferred firm among those remaining. Note that not all firms need have another firm

to influence if their utility from doing so be negative.

Formally, the probability distribution over imitation opportunities can be con-

structed in the discretized case as follows, when the ability grid takes values z ∈
{z1, ...zN}, which are ordered (i < j =⇒ zi < zj).

Define µ̃(z, ẑ) as the measure of ẑ influencing z (a N×N matrix). We can construct

µ̃ in the following steps given the measure µ of agents of each z type:

1. Let U(z, ẑ) be the N ×N matrix of utilities of ẑ influencing z, and µ̃ be a N ×N
matrix of zeros. Let µ̄ be the N × 1 vector of unassigned influencers and µu be

the N × 1 vector of unassigned imitators. Set µ̄ = µu = µ, n = N , and m = 1.

2. Let l be the m-argmax of U(·, zn). If U(zl, zn) ≤ 0, set µ̃(z1, zn) = µu(zn) and

skip to step 5.

3. If µ̄(zn) ≤ µu(zl), then µ̄(zn) = 0, µu(zl) = µu(zl)− µ̄(zn), and µ̃(zl, zn) = µ̄(zn).

Skip to step 5. Otherwise, go to 4.

4. If µ̄(zn) > µu(zl), then set µ̃(zl, zn) = µu(zl), µu(zn) = 0 and µ̄(zn) = µ̄(zn) −
µu(zl). Set m = m+ 1 and return to step 2.

5. Set n = n− 1 and m = 1. If n = 0, go to step 6. Otherwise, go to step 2.

6. Set µ̃(·, z1) = µ̃(·, z1) + µu, and stop.
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Given this matrix µ̃(z, ẑ), the measure of assignments M̂ is given by:

M̂(ẑi, zj) =

∑i
k=1 µ̃(zj, ẑk)

µ(zj)

C.4 Cost to Receive a Match

Firms pay a cost to receive a uniform random draw from the productivity distribution.

We model this as a function f(s; θ), in that a firm that pays cost f(s; θ) receives a

uniform random draw with probability s. We assume that fθ > 0, so that the cost to

achieve any level of s is increasing in θ. In a stationary equilibrium, under standard

conditions this implies a stationary decision rule s(z,M∗; θ) with sθ < 0. We can

write the distribution of draws as

M̂(c; z, θ) = (1− s(z,M∗; θ)) + s(z,mM∗; θ)M∗(c)

≡ Q(c; z,M∗, θ)

Thus, in the stationary equilibrium of this economy, our same procedure goes through.

This example provides important context for our set of assumptions – they need not

be assumptions only on the primitives of the model. Additional assumptions, such as

stationarity, may guarantee the model is covered under our assumptions. The use of

stationarity here is similar to its role in the identification procedure of Jarosch et al.

(2021), who study learning among German co-workers.
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D Extensions of Diffusion Parameter Identification

In this Appendix, we focus on theoretical extensions of the main estimation procedure

in the paper to show that the procedure itself is robust to any number of extensions.

In Appendix F, we provide a quantitative evaluation of a particular extension related

to mis-measurement.

D.1 Semi-parametric identification

Assumption 1 laid out a function form for the law of motion of ability: z′(z, ε, ẑ) =

ec+εzρ max
{

1, ẑ
z

}β
. We broaden this in Assumption 5 by replacing the max function,

Assumption 5. Given ability z this period, an imitation opportunity ẑ, and a random

shock ε, ability next period z′ is given by

z′(z, ε, ẑ) = ec+εzρf

(
ẑ

z

)
(D.1)

Assuming f(ẑ/z) = max{1, (ẑ/z)}β gives us the original Assumption 1. Proposi-

tion 4 summarizes that we can instead estimate the function f using the same data-

generating process as in the main text.

Proposition 4. The data-generating process of Assumption 4 identifies (ρ, f) in equa-

tion (D.1) (while maintaining Assumptions 2 and 3 in the main text) by estimating

the regression

log(π′i) = c̃+ ρ log(πi) + f

(
π̂i
πi

)
+ ε

This result follows directly from an established literature on partially linear re-

gressions. See, for instance, Yatchew (1997) on differencing estimators in this class of

models.27 Härdle et al. (2000) provides a detailed review.

D.2 More general relationship between observables and z

In Assumption 2 we assume that some observable (e.g., profit) π has the characteristic

that π ∝ z. We extend that here.

27The basic idea is that by ordering the data such that π̂1/π1 < π̂2/π2 . . . < π̂N/πN , once can difference out the
nonlinear f in the limit under conditions that guarantee that the gap between i and i + 1 goes to zero. This allows
straightforward OLS to estimate ρ. Then f can be estimated non-parametrically by any number of methods.
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Assumption 6. There exists a known function g : X → R++ that maps observable

characteristics x to ability z up to a potentially unknown constant of proportionality.

That is, g(x) = Cz for some potentially unknown constant C.

By assuming π ∈ x and g(x) = π, we recover the original assumption π ∝ z. But

Assumption 6 allows for more complicated possibilities. For example, one could es-

timate a production function using the control group panel data. Such a procedure

would imply a mapping g(y, n, k) = Cz. That is, it takes output data y and input

data for labor and capital (n, k) (or any other input bundle) and infers the value z.28

Proposition 5. The parameters (β, ρ, θ) are identified when we replace Assumption

2 with Assumption 6.

This follows almost directly, as the regression

log(g(x′)) = c+ ρ log(g(x)) + β log

(
max

{
1,
g(x̂)

g(x)

})
+ ε,

is straightforwardly estimated with known g. By Assumption 6 this collapses to the

required equation that gives (β, ρ). The second step goes through with the same

adjustment. The key to our procedure is not the proportionality of any one variable

with z, but a proportional mapping between any set of observables and z.

D.3 Mis-measurement

We now assume that profit is mis-measured. This affects our estimation procedure,

introducing bias into the parameters. The regression error is not additively separable

from the true value in our non-linear model, which implies that standard instrumental

variable methods to correct linear measurement error no longer hold. Yet, there is

a substantial and active literature on mis-measurement in non-linear models that

provides a number of ways to overcome this issue.

We discuss this issue in the context of a more general ability law of motion, to

emphasize that it does not depend on the specific choices we have made on functional

forms. We provide a quantitative evaluation of these issues in Appendix F.

28g is not the production function here, but is inferred from it.
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Assumption 7. The law of motion for diffusion can be written as

log(π′) =
M∑
j=1

βjgj(~π) + ε

where ~π = (π, π̂) for a known function (gj)
M
j=1.

Note that we have already imposed the maintained ability to move between ability

z and profit π. The key additional assumption is an adjustment to Assumption 4,

which governs the type of data to which we have access.

Assumption 8. Profit is measured with error, and we observe two outcomes that are

mis-measured versions of the true value, ~π∗ = (π∗, π̂∗). We denote ~πk as the two

entries in the vector. We denote these observable values as (πk1 , π
k
2), k = 1, 2. The

measurement error is classical, so that for each individual i we observe

~πk1i = ~π∗ki + νk1i, k = 1, 2

~πk2i = ~π∗ki + νk2i, k = 1, 2

where ν1 and ν2 are unobserved disturbances. We assume the following relationships

between the measurement error and true values:

E[νk1 |π∗k, νk2 ] = 0, k = 1, 2

νk2 is independent from ~π∗, ν−k2 , where − k 6= k

The assumption of a repeated measurement opens up a suite of tools related to

repeated measurement adjustments in non-linear estimation. While other methods

exist to solve this problem, the existence of this approach has the benefit of almost

always being available in a firm-level survey.29

The basic idea behind this identification approach comes from Kotlarski’s Lemma,

which in R
1 is

φπ∗(t) = exp

(∫ t

0

E[iπ1e
itπ2 ]

E[eitπ2 ]

)
and φπ∗(t) is the characteristic function φπ∗(t) =

∫
R
eitπ

∗
f ∗π(π∗)dx. An inverse Fourier

transform gives us the distribution of true values fπ∗ , which can be used to construct
29For example, π1 could be profit asked directly while π2 could be measured as revenue minus costs. Another would

be to use the same variable measured at two points in time, as highlighted by Schennach (2020). Finally, many models
allow relationships between input expenditures, revenue, and profit that could be utilized, albeit with more structure
than we have here. An example is a Cobb-Douglas production function with competitive factor markets.
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the relevant estimator moments.

Our model requires ~π∗ = (π∗, π̂∗) ∈ R
2, which introduces some complications.

The second part of Assumption 8 provides necessary conditions for identification in a

multidimensional nonlinear model.

Proposition 6. If E[|~πk|] and E[|ηk1 |] are finite, then there exists a closed form for

any function E[u(~π∗, β)] whenever it exists.

Proof. Provided in Schennach (2004). �

Schennach (2004) provides the details of the approach and how to develop an

estimator from Proposition 6. The key feature, however, is that this result allows a

broad class of extremum estimators to be deployed to identify β.

D.4 Additional characteristics

One might also suspect that alternative characteristics influence learning. For ex-

ample, firm owners may retain more ability when meeting with another owner of a

similar age. This amounts to allowing β to depend on a set of characteristics of the

firm owner x and her match x̂. In this case, we can write

log(π′i) = c+ ρ log(πi) + β(x, x̂) log

(
max

{
1,
π̂i
πi

})
or, binning characteristics X× X̂ in some way,

log(π′ib) = c+ ρ log(πib) +
B∑
b=1

βb log

(
max

{
1,
π̂ib
πib

})

This regression identifies (ρ, β1, . . . , βB) under the same assumptions as in the main

text. The second step follows with a slight adjustment to Assumption 3. We assume

there is a discrete distribution over types Γb and, with a slight abuse of notation,

re-write the draws over types and profit as

M̂(ẑ, b; z, θ) = M̂b(ẑ; z, θ)Γb

As long as M̂b has the same properties as Assumption 3, the second step of the

procedure similarly identifies θ.
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E Characterizing the Efficient Allocation from the Social Plan-

ner’s Problem

Here, we lay out the solution to the social planner’s problem, and show that it similarly

relies on properly measuring the intensive and extensive margins.

Before doing so, one conceptual issue to deal with is the role of suppliers. We

exclude them from our measure of welfare. In our context, these suppliers take their

profits out of Dandora, so that buying intermediates does indeed involve resources

exiting the economy. To operationalize this idea, we assume that the price paid

follows the same solution as the Nash bargaining problem solved in Proposition 1, in

that the price px is given

px =

(
1− η − ν(1− η − α)

α

)
e−sz

α+η−1
α .

We will write px(z, s) to denote this price.30

With those details, we are ready to define the planner’s problem. The social

planner allocates occupations o, firm inputs (x, n) and supplier search intensity s

for each agent to maximize ex ante utility, subject to the relevant aggregate resource

constraints. Since we will focus on the stationary equilibrium, we drop the dependence

of the decision rules on the aggregate state M for some notational simplicity. Defining

the value to an agent with ability z as

ṽ(z) = ω log(c(z)) + (1− ω) log(1− s(z)) + (1− δ)
∫
ε

∫
ẑ

ṽ

(
ec+εzρ max

{
1,
ẑ

z

}β)
dM̂(ẑ)dF (ε),

we can write the planner’s problem recursively as

max
o(·),c(·),x(·),n(·),s(·)

∫ ∞
0

ṽ(z)dM(z) (E.1)

30There is nothing conceptually difficult about including these suppliers in the measure of welfare. Our goal is
only to remain faithful to the economic environment from which the empirics are derived. A further benefit of this
assumption is that it focuses attention on the role of the diffusion externality, as opposed to other types of inefficiencies
that arise from the bargaining protocol.
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s.t.

∫
o(z)=1

(
x(z)αn(z)η − px(z, s(z))x(z)

)
dM(z) =

∫ ∞
0

c(z)dM(z) (E.2)∫
o(z)=1

n(z)dM(z) =

∫
o(z)=0

dM(z) (E.3)

M(z′) = δG(z′) + (E.4)

(1− δ)
∫ ∞

0

∫ ∞
0

F (log(z′)− ρ log(z)− β log(max{1, ẑ/z})− c)dM̂(ẑ)dM(z)

M̂(ẑ;M) =

( ∫ ẑ
0
φ(z,M)dM(z)∫∞

0
φ(z,M)dM(z)

) 1
1−θ

. (E.5)

While complicated looking, this problem has a straightforward interpretation. The

planner’s objective is to maximize the expected value of ṽ. The first two constraints

are the aggregate resource constraints – (E.2) determines the resources that can be

allocated to consumption, while (E.3) equalizes labor supply and demand. The latter

two constraints show that the planner internalizes how her decisions affect the evolu-

tion of the aggregate state (via E.4) and the imitation opportunities that arise from it

(via E.5). These constraints highlight the planner’s ability to overcome the diffusion

externality, in that she takes into account the implications of occupational choice on

learning opportunities in a way that individual agents do not.

We measure the difference in welfare between the allocation chosen by the planner

and the baseline laissez faire equilibrium in consumption-equivalent terms. That is,

we ask by what percentage we would we have to increase each agent’s consumption

in every state and time period to equalize average utility between the two economies.

This difference is our measure of the aggregate importance of diffusion.

While the planner’s problem does not admit a closed-form solution, we can derive

some implications for comparison to the baseline laissez faire equilibrium.

Proposition 7. The planner chooses a cutoff rule for occupations, z, such that all

z ≥ z operate firms. Consumption cp is constant across agents and given by the

constant returns to scale aggregate production function cp = AN
η

1−α
s Z

1−α−η
1−α , where A

is a constant and the two aggregate inputs are

Ns =

∫ z

0

dM(z) , Z =

∫ ∞
z

z exp(s(z))
α

1−α−η dM(z).
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Moreover, if s(z) > 0 (which we verify at our estimated parameters), s(·) is a strictly

increasing and concave function of the form

s(z) =

(
1− α− η

α

)
W0

[(
α

η + α− 1

)
exp

(
α

η + α− 1

)
q(z/z, s(z))

]
+ 1 ∀z ≥ z,

where W0(·) is the principal branch of the Lambert W function and q(·, ·) is a function

of relative ability z/z and supplier search at the cut-off value, s(z).

Proof. The proof is at the end of the Appendix, in Appendix Section H. �

One can see the goals of the planner in Proposition 7. Like in the baseline, the

planner uses a cut-off rule to define occupations. As we show below, she chooses

fewer firms than the baseline equilibrium, a function of the diffusion externality in the

baseline economy. Furthermore, she shifts the search for suppliers away from relatively

low ability agents. Instead, she takes advantage of complementarity between ability

and supplier search effort. This allows higher ability agents to procure resources that

can be redistributed to all agents. These incentives are naturally absent in the baseline

equilibrium, where individuals consume their income.

In terms of our inability to push further theoretically, the properties of W0 preclude

a closed form solution.31 We derive these results in Appendix H.4, and proceed with

quantitative results in the next section.

E.1 Quantitative Implications

Our interest here is understanding the importance of separately identifying the inten-

sive and extensive margin parameters to understand the welfare gains in the social

planner’s problem.

We follow a similar (but slightly simpler) approach to the main text. We exoge-

nously vary β, then re-estimate θ to continually match the same average treatment

effect. Thus, the average treatment effect is still used as an estimating moment, but

our first stage regression (run within the treatment group) is not.

Throughout, we hold the persistence ρ fixed for simplicity. Figure 9 plots the

implied value of θ and the consumption-equivalent welfare gains, the latter of which

31The Lambert W function is the inverse of F : x 7→ x exp(x), and we can restrict attention to the principal
branch. The main issue for our purposes is that the only analytical characterization of W0 is the power series
W0(a) =

∑∞
n=1((−n)n−1/n!)an, which is of little help in attempting to attain a closed form for the planner’s problem

here. Put slightly more technically, the supplier search function s is the solution to a delay differential equation in z,
but this solution prevents an analytic characterization of the initial condition s(z).
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is normalized to one at our estimated value.

Figure 9: Importance of Separately Identifying Two Diffusion Effects

(a) Implied θ
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Figure notes: The left panel shows the implied θ required to estimate the same treatment effect observed in the data
at the exogenously given β. The dashed vertical line the minimum value of β for which there exists a θ that can
rationalize the observed average treatment effect. This is related to the discussion of Γmin defined in Proposition 2.
θ → −∞ as β approaches this value from above. The right panel shows the implied consumption-equivalent welfare,
normalized to one at our estimated parameters. Our estimated values are denoted by the circle in each graph.

The welfare implications are in Figure 9b. We focus first on the solid line. This

is our baseline counterfactual in which θ is re-estimated to achieve the same average

treatment effect. The differences here can be substantial. Increasing β from 0.25 to to

our estimated value 0.538, for example, increases the consumption equivalent welfare

gain by 59 percent. Perhaps more surprisingly, overestimating the intensive margin

forces can similarly bias downward welfare gains. Assuming β = 0.90 instead of 0.538

lowers the implied welfare gains by 40 percent. We detail to the economic forces

governing these trade-offs in the next section. For now, however, the results show

that understanding effecient welfare gains depends critically on separately identifying

the parameters governing the extensive (here, θ) and intensive (here, β) margins, as

our procedure does.

E.1.1 Understanding Forces Behind This Pattern

To better understand the forces behind the pattern above, we also re-estimate the

welfare gains while holding θ fixed at its baseline value. This is the dashed line in

Figure 9b. The limited difference between the two lines shows that the welfare gains
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are primarily driven by the direct effect of β, and not the implied differences in θ.32

Thus, understanding the main results above primarily requires understanding the

impact of changing β. We study that here.

A useful starting point is to re-write total resources in the planner’s allocation

in terms of semi-elasticities. Recalling the aggregate production function defined in

Proposition 7, we can then define the semi-elasticity of consumption with respect

to the occupational cut-off, εcp := (∂cp/∂z)/cp, as the sum of the aggregate input

elasticities,

εcp =

(
η

1− α

)
εNs +

(
1− α− η

1− α

)
εZ . (E.6)

Equation (E.6) tells us the consumption change induced when the planner slightly

shifts the occupational cut-off. There are two components to the consumption gains.

The first is static – holding the ability distribution fixed, increasing the cut-off me-

chanically increases labor supply. This positively affects εNs and negatively affects εZ .

But key in this model is that shifting z also affects the ability distribution M through

diffusion. This is the dynamic effect on production, as the mass of the population

in each occupation changes as M changes.33 Figure 10 plots the semi-elasticity εcp ,

along with those of the two aggregate inputs defined in (E.6). They are evaluated at

the baseline equilibrium cut-off.

The first thing to note about Figure 10a is that the elasticity is positive for any

value of β. Thus, no matter the parameters, the planner can increase consumption

by transition some baseline entrepreneurs to wage work. This is entirely a function

of the diffusion externality. Moreover, as expected, it follows a similar shape to the

overall welfare gains. Finally, Figure 10b shows that this is in large part driven by

εZ . That is, the consumption response is primarily driven by the changes to ability

in the economy.

Why, then, does εZ take this shape? This is at the heart of understanding how

the overall welfare gains vary with the critical parameter β. Figure 11a provides a

mechanical rationale: the numerator of εZ is approximately linear while the denomi-

nator is substantially more convex. But both of these curves have natural economic

interpretations. The numerator, ∂Z/∂z, measures the change in economy-wide ability

32The difference between the two is driven by the fact that the welfare gains are declining in θ.
33It is straightforward to show that each of these semi-elasticities can be decomposed into a static and dynamic

term, as εj = εSj +εDj for j = Ns, Z. The static reallocation across occupations plays almost no quantitative role here.
Thus, when interpreting the results here, one should think of them as driven by the dynamic diffusion effects.
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Figure 10: The Semi-Elasticity of Consumption for the Social Planner

(a) Semi-Elasticity of Consumption, cp
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Figure notes: These semi-elasticities are evaluated at the baseline equilibrium cut-off z∗ and equilibrium distribution
M∗(z; z∗).

from a marginal increase in the cut-off. It is monotonically increasing – the higher β,

the larger the potential impact on ability. This means that all else equal, a higher β

induces a larger increase in consumption for the planner.

But the welfare gains depend on how that composite ability compares to the

baseline equilibrium. This baseline ability is given by Z in Figure 11a, and also

depends on β. In particular, higher β increases the gains from a good match. This

increases ability and thus drives up the return to labor, which increases the wage.

The higher wage induces more wage workers, as Proposition 1 shows that the baseline

cut-off has the feature z ∝ w
1−α

1−η−α (Figure 11b shows it graphically). These same

steps are then compounded in equilibrium. With fewer, more able firms, diffusion

accelerates even faster as agents further increase ability. The stationary equilibrium

wage then takes the convex share of Figure 11a.

Together, these results highlight the two competing forces in the model, both of

which can be seen in Figure 11. At low levels of β, the matching technology limits

the aggregate welfare gains. At high levels of β, we see similar welfare gains, but for a

different reason. Here, standard equilibrium forces already accomplish most of what

the planner would want to accomplish. While the baseline economy is clearly richer,

the returns to additional intervention by the planner at high β are low. We summa-
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rize these forces in Figure 11c, which plots average consumption across the baseline

and efficient allocations. Consistent with these results, average baseline consumption

grows more slowly than the efficient consumption at low β, then more quickly at high

β.

Thus, these two competing economic forces – the race between technology and

equilibrium prices in generating diffusion – are critical in generating the non-monotonicity

observed in the headline results. Moreover, they are governed are the diffusion pa-

rameters we estimate. Thus, estimating these parameters plays an important role in

understanding the aggregate implications in the economy.

Much like our main results, the planner’s problem shows that separating the exten-

sive and intensive margin is critical to understanding the gains from policy, whether

they be a change to the matching technology (as in the main text) or the fully efficient

planner’s allocation (here).
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Figure 11: Equilibrium Forces and the Pattern of εZ

(a) Decomposing εZ
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Figure notes: In Figures 11b and 11c, our estimated values are denoted by the circle in each graph and normalized to
one.
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F Quantitative Implications of Mismeasurement

We explore the quantitative consequences of mis-measuring profit here. We make the

following assumption: for all individuals, we observe π = τπ∗, where τ ∼ N(0, στ ) is

classical measurement error (in logs), π is observed profit, and π∗ is true profit. We

assume that τ ∼ N(0, στ ), where στ is known but the individual realizations are not.

As discussed in Appendix D this can be extended to estimate the distribution of τ .

We leave this aside for simplicity here. Define the function

g(π∗, π̂∗; Γ) = c+ ρ log(π∗) + β log

(
max

{
1,
π̂∗

π∗

})
where Γ := (c, ρ, β) is the parameter set. Our first stage regression is log(π′∗) =

g(π∗, π̂∗; Γ), but is complicated by the mis-measured profit on the right hand side of

this equation. Here, we re-estimate this regression with mis-measured profit and show

how the results change.

F.1 Estimation Procedure

Some notation is required. For any variable x, define x̃ = log(x), fx(x) as the proba-

bility density function, and φx(t) =
∫
R
eitxfx(x)dx as its characteristic function.

We first estimate the characteristic functions of the observed π and π̂,

φ̂π̃(t) =

(
1

n

n∑
j=1

eit log(πj)

)
φk,π(hπt)

φ̂˜̂π(t) =

(
1

n

n∑
j=1

eit log(π̂j)

)
φk,π̂(hπ̂t)

The first term in parenthesis is the empirical characteristic function using mis-mesaured

variables (πj, π̂j). The latter term, φk(ht), is the Fourier transform of a kernel density

estimator with bandwidth h.34

Since φπ̃∗(t) = φ̂π̃(t)/φτ̃ (t) and similarly for π̂ (due to the independence of π and

34A well-known issue with this type of estimation is the inaccuracy of the empirical characteristic function in the
tails of the distribution. A kernel density estimate is one version of what is generally referred to as a dampening
factor to improve accuracy. The fact that φk enters multiplicatively follows because a kernel estimator is also a type
of convolution.
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π̂), we recover the estimated densities of π and π̂ from an inverse Fourier transform,

fπ∗(π
∗) =

1

2π

∫
φ̂π∗(t)e

−itπ∗dt

fπ̂∗(π̂
∗) =

1

2π

∫
φ̂π̂∗(t)e

−itπ̂∗dt

where π in the ratio 1/(2π) should be understood to be π ≈ 3.14 instead of profit (as

to not introduce any additional notation).

With the true distribution functions, we can estimate our regression in any number

of ways. We use the minimum distance estimator proposed by Hsiao (1989). That is,

we choose parameters Γ := (c̃, ρ, β) to solve

min
Γ

n∑
i=1

(π′i −G(πi, π̂i; Γ))
2

(F.1)

where

G(π, π̂; Γ) =

∫ ∫
g(π∗, π̂∗)fπ∗|π(π∗|π,Γ)fπ̂∗|π̂(π̂∗|π̂,Γ)dπ∗dπ̂∗

The minimum distance estimator in (F.1) is also extended to unknown error dis-

tributions by Li (2002) using the repeated-measurement framework discussed in Ap-

pendix D.

F.2 Updated Calibration

After estimating the diffusion parameters, we update the calibration to take these

values into account. The updated parameters are listed in Table 9, along with the

baseline for comparison. We do so in two scenarios: στ = 0.30 and στ = 1.

F.3 Quantitative Exercise

We now study the gains from the same exercise as in the text. The main results are

in Table 10. The first column fixes the wage at its baseline level, isolating the impact

of the changing ability distribution. The second column allows the wage to adjust,

adding in the additional general equilibrium effect on prices.

Overall, by biasing our parameter β toward zero, our results are a lower bound

on the gains at-scale. Figure 12 shows that the same results on the many-to-one

relationship between the ATE and at-scale gains holds.
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Table 9: Updated Parameter Values

Model Description Parameter Parameter Parameter

Parameter (Baseline) (στ = 0.3) (στ = 1)

Exogenously varied:

στ St. dev. of distortions 0 0.3 1.0

Group 1

β Intensity of diffusion 0.538 0.629 0.883

ρ Persistence of ability 0.595 0.371 0.494

θ Match technology “quality” -0.417 -0.326 -0.179

Group 2

δ Death rate of firms 0.016 0.016 0.016

σ0 St. dev. of new entrant ability distribution 0.961 0.961 0.961

ν Firm bargaining weight 0.5 0.5 0.5

Group 3

σ St. dev. of exogenous ability shock distribution 0.75 0.74 0.66

c Growth factor in ability evolution -1.92 -2.23 -2.41

ω Consumption utility weight 0.53 0.54 0.62

α Ability elasticity in supplier search 0.36 0.36 0.36

η Ability elasticity in supplier search 0.05 0.05 0.05

Table notes: Group 1 is jointly chosen from the experimental data. Parameters in Group 2 are calibrated to
jointly match moments. Group 3 are also set to match baseline data moments, but match 1-1 with target
moments. Both are set to match the same set of moments discussed in the main text (see Table 2 for details).

Table 10: Equilibrium Moments

στ = 0.3 στ = 1

(1) (2) (3) (4)

Fixed Wage At-Scale Fixed Wage At-Scale

Income 1.08 1.12 1.20 1.38

Ability 1.08 1.14 1.20 1.42

Aggregate Labor Supply 0.92 0.99 0.89 1.00

Wage 1.00 1.14 1.00 1.39

Table notes: All are measured relative to the baseline equilibrium at the give value of στ . Each column
reports the new stationary equilibrium after shocking the matching technology, where the first (columns
1 and 3) holds the wage fixed at its baseline level and the second allows it to adjust.
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Figure 12: Range of Aggregate Gains for each ATE

(a) στ = 0.3
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(b) στ = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure notes: Shaded area is all possible aggregate gains for (β, ρ) ∈ [0.20, 0.95] × [0.20, 0.95], where θ is chosen to
match the ATE on the horizontal axis. The baseline estimate is given by the dashed line.
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G Implementing the Same Procedure in the RCT of Cai and

Szeidl (2018)

G.1 RCT Details

In an innovative recent paper, Cai and Szeidl (2018) (CS hereafter) conduct an RCT

among 2,820 Chinese firms. Treated firms (1,500 of 2,820) are randomly placed into

a group of approximately 10 other firms, then compared to a control group with no

prearranged meetings.

While similar in style to the RCT used in the main body of the paper, there

are a number of differences. First, these are group meetings instead of individual

meetings. Second, the meetings are substantially more intense: firms are expected

to meet monthly for a year.35 Third, these firms are larger. At baseline the average

firm has 35 workers. Finally, they cross-randomize information about new financial

products to track the diffusion of information directly.

Firms are surveyed 3 times: before the treatment, 1 year post-treatment (i.e., at

the end of the treatment period), and 2 years post-treatment. We refer to these as

t = 0, 1, 2. We estimate our procedure off the t = 1 data and later ask whether we

can match the effect at t = 2.

G.2 Overview of Empirical Results

While we will not do justice to the full set of results provided in CS, we provide a

brief overview here to relate them back to our baseline RCT in the main text and

provide context for modeling decisions. Like our baseline results, CS find important

effects on firm performance. In a regression of the form

yit = λ0 +

≡ time effects︷ ︸︸ ︷
λ1 · 1t=1 + λ2 · 1t=2 +

≡ per-period ATE︷ ︸︸ ︷
λ3 · (1t=1 × Tit) + λ4 · (1t=2 × Tit) +FirmFEi + εit

they find positive and statistically significant effects at t = 1 (i.e., λ3 > 0) for sales,

profit, employment, and productivity. These meetings do indeed seem to leave firms

better off. Unlike our baseline RCT, however, these effects persist at t = 2, a full year

after the treatment concludes (i.e. λ4 > 0).36

35Take-up is still high, with average attendance of 87 percent.
36Productivity here is measured as firm-level TFP from estimating a revenue production function among control

firms. This is the only outcome of those listed in which the point estimate at t = 2 is statistically insignificant, but it
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A number of additional results provide context for these firm performance effects.

First, they find persistent changes in management practices.37 Thus, direct compo-

nents of firm-level productivity increase. Second, they cross-randomize information

on a new financial product to test whether information is indeed flowing between firms

within the group, and find that it does. We (and CS) take this as a direct measure

that information is flowing between firms in the group.

Finally, CS provide one measure of group-level heterogeneity, asking whether

treated firms who have larger average group members enjoy a larger treatment ef-

fect. Denoting nmi as the average firm size of firm i’s matches, they run

yit = λ0 + λ1 log(nmi ) + εit for i in the treatment group. (G.1)

They find statistically significant increases in sales and profit. CS use (G.1) as an

“internal consistency check,” in the sense that most reasonable theories would predict

λ1 > 0. As is hopefully clear at this point, this type of regression has an additional

role: it is a critical test for extrapolating these results to at-scale implications. We

will exploit this regression below in our estimation.

G.3 Model

The empirical setting and results motivate our model structure. Because these are

larger firms, we we study this RCT in the context of a more classic Hopenhayn (1992)

style model. Given the results on productivity and management practices, we allow

diffusion of firm productivity directly, instead of the ability to seek out suppliers.

This assumption is more in line with the existing growth literature (Lucas, 2009;

Perla and Tonetti, 2014, and many others). Finally, we construct our learning process

to conform to the available empirical results, which we discuss more below.

Basics: Production and Households The model period is one year (the length of

the exogenous matches in the RCT). There is a measure one of firms, each of which

produces according to the production function yt = z1−α−η
t nαt k

η
t , where zt is firm-

level productivity, nt is labor, and kt is capital. Capital and labor are traded on a

competitive spot markets with prices rt and wt. Each period δ firms exit and are

is still positive. We read less into this result, as it is likely the most noisily estimated.
37These include an overall management index, along with components on the evaluation and communication of

employee performance, the setting of targets, process documentation, and delegation of power.
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replaced by δ new firms, who draw initial productivity from z ∼ G(z).38 As in the

main text, firms draw idiosyncratic shocks ε ∼ F and imitation shocks ẑ ∼ M̂ .

A representative household with flow utility u(Ct) provides labor and capital, and

owns all firms. Its utility is given by:

max
{Ct,Kt+1}≥0

∞∑
t=0

(1− δ)tu(Ct)

s.t. Ct +Kt+1 − (1− λ)Kt = wt + rtKt + Πt

K0 given

where Πt is the aggregate profits from all operating firms and λ is depreciation rate

of capital. We assume the household discounts at the firm exit rate for simplicity.

The aggregate state of the economy is the distribution of firm-level productivity,

M(z), and the aggregate capital stock, K.

Learning and Diffusion Given the high cost-effectiveness of the program, CS posit

a number of possibilities for why firms did not self-organize these meetings. These

include search costs, trust barriers and lack of familiarity with other managers, and

a free-rider problem in which managers expect others to pay the cost of organization.

Motivated by these “missing” meetings, we set up a source distribution in which a firm

receives no meetings with probability 1−θ. With probability θ, the firm joins a group

of exogenous size N . These N firms are uniformly random draws from the equilibrium

productivity distribution M . We denote ẑ1, . . . , ẑN to be the productivities of the N

matched firms.

We next define a match ẑ in this context, which in general can take any function

over the characteristics of these N firms. Here we are constrained by the results

reported in CS, who report how the treatment effect varies by only the average size of

the N firms. As such, we assume that ẑ =
∑N

i=1 ẑi/N so that we can use their provided

moment. If a firm does not receive a match, it gets ẑ = 0.39 We can therefore write

38In the more classic Hopenhayn (1992) or Melitz (2003) sense, the model can be easily extended to include
endogenous firm entry/exit by introducing fixed costs, as opposed to our assumed exogenous entry/exit margin.
Adding this additional margin does not change the results we focus on here and we therefore exclude it for simplicity.
This assumption also does not affect identification. Our procedure relies only on firms in operation at a given point
in time, so that the details of past entry are immaterial.

39This is of course not a critique of the extremely useful publicly-provided dataset of CS. We note this only to
highlight that there is no theoretical benefit to making this assumption, and we do so because it is the only estimating
moment of group-level heterogeneity available in their public data.
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the source distribution as

M̂(ẑ) = 1− θ + θQ(ẑ),

where Q(·) is the N -draw sampling distribution of the mean derived from the equi-

librium productivity distribution M .

Finally, we note that within treated firms, there is no differential effect between

firms with ẑ > z or ẑ < z. Therefore, we remove the max operator and assume that

the law of motion takes the form

zt+1 = ec+εtzρt

(
1 +

ẑt
zt

)β
. (G.2)

Equation (G.2) shows that if the firm does not interact that period (Pr = 1−θ), it

gains nothing from its ẑt = 0 draw. Conditional on meeting (Pr = θ), however, there

will be gains from doing so. Those gains are increasing in the average productivity of

matched firms.

Taken together, the firm’s problem can be written as (with the aggregate state

suppressed, as we will focus on a stationary equilibrium):

v(z) = max
n,k≥0

z1−α−ηnαkη − wn− rk + (1− δ)
∫
ε

∫
ẑ

v(z′(ẑ, ε; z))M̂(dẑ,M)dF (ε)

s.t. z′(ẑ, ε; z) = ec+εzρ
(

1 +
ẑt
zt

)β
Equilibrium The stationary equilibrium of this economy is an invariant distribution

M∗(z), household decision rules C, K ′, firm decision rules n, k, and value function v

such that the household’s and firms’ value function solves their respective problems

with the associated decision rules, markets clear

1. labor market:
∫
z
n(z)dM∗(z) = 1

2. capital market:
∫
z
k(z)dM∗(z) = K

3. consumption market:
∫
z
z1−α−ηnαkηdM∗(z) = C + λK

and the relevant aggregates are consistent

1. profit:
∫
z
π(z)dM∗(z) = Π
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2. law of motion for ability:

M ′ := Λ(M(z′))

= δG(z′) + (1− δ)
∫ ∞

0

∫ ∞
0

F (log(z′)− ρ log(z) + β log(1 + ẑ/z)− c)dM̂(ẑ)dM(z)

with M∗(z) = Λ(M∗(z)).

G.4 Estimating Diffusion Parameters

We begin by using our two-step procedure to estimate the key diffusion parameters

(β, ρ, θ).

The production function here generates the usual Cobb-Douglas result that inputs

labor and capital, sales, and profit are all proportional to z. Therefore, we are free

to use any of these moments for identification (see also Appendix Section D.2 for a

further generalization).

Averages are also proportional to z. If a firm matches with N firms of size

n̂1, . . . , n̂N , then we can infer the average productivity as

n̂ :=

∑N
j=1 n̂j

N
=
(α
w

) 1−η
1−α−η

(η
r

) η
1−α−η

∑N
j=1 ẑj

N
∝ ẑ. (G.3)

Given these results, we focus on firm size here for our estimation. As discussed

above, it is the only moment available in the public CS data for the first step of our

estimation procedure. Rather than introduce a second dependent variable, we use

firm size in the second step as well.

Following our procedure in the text, we will estimate the diffusion parameters

using only t = 0, 1 data then later check whether the time series matches t = 2

outcomes. Thus, the first step of our procedure is to estimate

log(n′i) = c+ ρ log(ni) + β log

(
1 +

n̂i
ni

)
+ ε for all i in treatment (G.4)

where n̂i is the average size of matched firms as defined in (G.3). Given (ρ̂, β̂) we then

estimate θ with the same procedure as the main text.

min
θ

abs

(
E[n′T ]

E[n′C ]
−
∫ ∫

πρ (1 + n̂/n)β dĤT (n̂)dHT (n)∫ ∫
nρ (1 + n̂/n)β dM̂(n̂; θ)dHC(n)

)
(G.5)
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where HC , HT are the empirical baseline distributions of control and treatment firms,

M̂ is the source distribution for control firms, and ĤT is the source distribution for

treated firms (given exogenously by the empirical implementation). We measure the

empirical ratio in (G.5) as the average treatment effect

log(n′i) = λ0 + λ1Ti + Controlsi + νi (G.6)

where Ti = 1 if i is in the treatment group. Table 11 provides the regression estimates

for (G.4) and (G.6).

Table 11: Identification Moments

(1) (2)

β 0.276
(0.053)***

ρ 0.955
(0.028)***

Treatment 0.076
(0.044)*

R2 0.764 0.395
Baseline Control Avg – 2.694

Table notes: Standard errors are in parentheses. Statistical significance at 0.10, 0.05, and 0.01 is denoted by *, **, and, ***.

Column (1) show that the average firm size is indeed a good predictor of treatment

effect magnitude. The ATE in column (2) then implies θ = 0.199. That is, the model

infers that it is quite unlikely that such a CS-style group would be created without

the intervention.

G.5 Remaining Calibration

We calibrate the remaining model to target parameters similar to the main text, using

CS data and other relevant moments. We choose 5 parameters that match directly

to their moments. These include a 9 percent firm death rate (δ = 0.09) to match

exit rates in China (e.g. Lu, 2021). The standard deviation of new entrant ability

matches the standard deviation of log profit for firms that have been open for less

than 1 year, which implies σ0 = 1.23. The depreciation rate is set to a standard

value of λ = 0.06. Finally, we have the Cobb-Douglas exponents on capital η and

labor α. We set η = 0.20 to match the median firm’s baseline capital-output ratio

(rk)/y = 0.20 then set α to match the median firm’s profit-sales ratio, π/y = 0.12.

This implies α = 0.68. Finally, we set the standard deviation of the exogenous ability
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shock to σ = 0.45 and the productivity drift c = −1.11. These two parameters jointly

match the standard deviation of log profit in the economy and the ratio of average

profit of all firms relative to those with less than 1 year of operation. Parameters and

moments are in Table 12.
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Table 12: Targets and Parameter Choices

Model Parameter Description Parameter Target Moment Source Target Model

Value Value Value

Group 1 From RCT

β Intensity of diffusion 0.276 Estimated parameter from regression RCT results 0.276 0.276

ρ Persistence of ability 0.955 Estimated parameter from regression RCT results 0.955 0.955

θ Match technology “quality” 0.199 Treatment effect at t = 1 RCT results 0.076 0.076

Group 2 Matched one-to-one with parameter

δ Death rate of firms 0.09 Average exit rate in China Literature (Lu, 2021) 34 34

σ0 St. dev. of new entrant ability distribution 1.23 Variance of log profit among new entrants CS Baseline 1.23 1.23

α Cobb-Douglas share, n 0.68 Median firm π/y CS Baseline 0.12 0.12

η Cobb-Douglas share, k 0.20 Median firm (rk)/y CS Baseline 0.20 0.20

λ Depreciation rate 0.06 Literature – – –

Group 3 Jointly targeted

σ St. dev. of exogenous ability shock distribution 0.45 Standard deviation of log profit in all firms CS Baseline 1.34 1.34

c Growth factor in ability evolution -1.11 Ratio of average profit of all firms to new entrants CS Baseline 1.12 1.12

Table notes: Group 1 is jointly chosen from the experimental data. Group 2 are also set to match baseline data moments, but match 1-1 with target moments. Parameters in
Group 3 are calibrated to jointly match moments.
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G.6 Treatment Effect Persistence

In Section ??, we showed that the treatment effect persistence is increasing in ρ and

decreasing in β. In our baseline Kenyan RCT we estimate (β, ρ) = (0.538, 0.595).

Here, we estimate (0.276, 0.955). Our estimates of both β and ρ predict more persis-

tent treatment effects than our baseline model.

We compare this to the empirics in Figure 13. We plot 3 time paths: the empirical

treatment effect (which is available for 2 years post-treatment), the estimated model

effect, and the estimated model effect when we assume our Kenyan RCT values for β

and ρ. We extend the latter two series for 5 years to trace the dynamics over a longer

horizon.

Figure 13: Dynamics of Average Treatment Effect (Firm Size)

0 1 2 3 4 5
-0.1

0

0.1

0.2

0.3
Data
Model
Kenyan RCT params

Figure notes: Dashed line is the data with 95 percent confidence interval, for which data is available at t = 0, 1, 2.
Solid line is the estimated model (β, ρ, θ) = (0.276, 0.955, 0.199). For comparison, we include the results at our Kenyan
RCT values of β and ρ, re-estimating θ to hit the t = 1 ATE, which implies (β, ρ, θ) = (0.538, 0.595, 0.496). We extend
the model-derived RCT for 5 post-treatment years to study fade-out.

The model is consistent with the persistent gains.40 Even 5 years post-treatment,

the model predicts that 89 percent of the initial benefits remain. In comparison, if we

replace β and ρ by our estimated values in Kenya, the fade-out is more substantial

and nearly complete by t = 4. The results highlight the importance of estimating

these parameters in governing the time series of the treatment effect.

40The slight increase observed in the treatment effect from t = 1 to t = 2 is statistically insignificant by any
reasonable cutoff.
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G.7 Quantitative Gains at Scale

We conduct the same exercises as the main text. To measure the aggregate impli-

cations, we permanently shock the matching technology to increase average match

quality, in line with the extensive margin focus of the RCT results. We do so by

shocking the parameter θ so that it is 25 percent closer to its limit of θ = 1. We study

the new stationary equilibrium and compare it to the baseline equilibrium. Aggre-

gate moments are reported in Table 13. We present two steady states, both of which

operate under the new matching function. The first (in column 2) fixes the wage at

its baseline level. The second (in column 3) allows the wage to adjust as well.

Table 13: Equilibrium Moments

(1) (2) (3)

Baseline Fixed Wage At-Scale

Income 1.00 1.13 1.05

Ability 1.00 1.39 1.39

Aggregate Labor Supply 1.00 1.00 1.00

Wage 1.00 1.00 1.05

Table notes: Column (1) is the initial equilibrium, normalized to one. (2) and (3)
report the new stationary equilibrium after shocking the matching technology,
where (2) holds the wage fixed at its baseline level and (3) allows it to adjust.

The direct effect of making it easier to learn from high ability agents is that average

ability rises by 39 percent and income by 13 percent. Some of that is eliminated by

the higher general equilibrium wage, with the net effect of a 5 percent increase in total

household income.

We next ask the importance of measuring treatment effect heterogeneity, as in the

main text. We vary (β, ρ) ∈ [0.20, 0.95]× [0.20, 0.95]. For each, we continually update

θ to match a given average treatment effect. We vary the ATE from 0 to 18 percent,

which traces out the range of possible aggregate outcomes by ATE.41 Those results

are in Figure 14. Similar results emerge as in the main text – the set of possible

aggregate outcomes for a given treatment effect can be large.

41The set of feasible ATEs for the range of (β, ρ) we consider is smaller here than in the main text, as our diffusion
process requires θ ∈ [0, 1]. See the discussion surrounding Proposition 2 for more details on this constraint.
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Figure 14: Range of Aggregate Gains for each ATE (Firm Size)

0 0.03 0.06 0.09 0.12 0.15 0.18
0
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Figure notes: Shaded area is all possible aggregate gains for (β, ρ) ∈ [0.20, 0.95] × [0.20, 0.95], where θ is chosen to
match the ATE on the horizontal axis. The baseline estimate at (β, ρ) = (0.276, 0.955) is given by the dashed line.
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H Proofs

H.1 Proof of Proposition 2

The bounds used in Proposition 2 are given by

Γmin = inf
θ

∫ ∫
πρ max {1, π̂/π}β dĤT,π(π̂)dHT,π(π)∫ ∫

πρ max {1, π̂/π}β dM̂π(π̂; π, θ)dHC,π(π)

Γmax = sup
θ

∫ ∫
πρ max {1, π̂/π}β dĤT,π(π̂)dHT,π(π)∫ ∫

πρ max {1, π̂/π}β dM̂π(π̂; π, θ)dHC,π(π)
.

We proceed with the proof under those bounds.

Proof. We can write π′ = g(z, ẑ, ε) = Aec+εzρ max{1, ẑ/z} by Assumptions 1 and 2

for some constant A. Since g is continuous, for a density f(z, ẑ, ε) we have

E[π′] =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

g(z, ẑ, ε)f(z, ẑ, ε)dẑdzdε

This follows from what is sometimes referred to as the “law of the unconscious statis-

tician.”42 Inserting the correct joint distributions, and utilizing the fact that the

exogenous shocks are orthogonal to z and ẑ (Assumption 1) gives us

ET [π′]

EC [π′]
=

∫ ∫
zρ max {1, ẑ/z}β dĤT (ẑ)dHT (z)∫ ∫

zρ max {1, ẑ/z}β dM̂(ẑ; z, θ)dHC(z)

Applying the proportionality assumption in Assumption 2 yields

ET [π′]

EC [π′]
=

∫ ∫
πρ max {1, π̂/π}β dĤT,π(ẑ)dHT,π(z)∫ ∫

πρ max {1, π̂/π}β dM̂π(π̂; π, θ)dHC,π(z)
.

Given β and ρ, the right hand side is continuous in θ by the continuity of M̂ in

Assumption 3. The intermediate value theorem then guarantees existence when Γ ∈
[Γmin,Γmax]. Finally, uniqueness follows from the strict monotonicity of the right

hand side in θ, which is guaranteed by the assumed first order stochastic dominance

in Assumption 3. �

42This result is trivially applied given our assumptions used in the main text, where the equation follows directly
from π′ ∝ z′. However, it is a useful result when we relax functional form assumptions in various extensions, so we
highlight it here.
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H.2 Proof of Proposition 3

Proof. Start from the law of motion defined in Assumption 1. In logs, and applying

Assumption 2 (π ∝ z) annd Assumption 4 (ẑ > z), this is

log(π′i) = c̃+ ρ log(πi) + β log

(
max

{
1,
π̂i
πi

})
+ εi, (H.1)

where πi and π̂i are baseline profit for individual i in the treatment group and her

match, while c̃ is a constant equal to the structural parameter c if π = z. Since

matches are observable within the treatment, (H.1) is a simple panel regression with

coefficients β and ρ. Since matches are randomized, the parameters are identifiable.

Thus, that β̂OLS and ρ̂OLS are equal to their structural counterparts follows directly

from the within-treatment exclusion restriction of Assumption 4. �

H.3 Proof of Proposition 1

We begin by detailing the underlying arithmetic of the model, then use those results

to prove Proposition 1 at the end of this section.

Solving the Bargaining Problem as a Function of Supplier Marginal Cost m Solving

the optimal input choices for the firm implies profit is

πf (c, w) =

(
α

px

) α
1−η−α ( η

w

) η
1−η−α

(1− α− η). (H.2)

A supplier has profit function πs = (px −m)x where m is its given marginal cost.

Given that they take as given the firm’s decision on inputs, this implies we can write

this profit as

πs(px,m) =

(
α

px

) 1−η
1−η−α ( η

w

) η
1−η−α

(px −m).

Re-writing the bargaining problem π(px)
νπs(px,m)1−ν taking these derivations into

account yields

max
px

( η
w

) η
1−η−α

(1− α− η)να
1−η−ν(1−η−α)

1−η−α c
ν(1−η−α)+η−1

1−η−α (px −m)1−ν
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Log differentiating gives the solution

px =

(
1− η − ν(1− η − α)

α

)
m (H.3)

Replacing px in the firm’s profit function (H.2) with the value from (H.3) yields

π =

(
α

1− η − ν(1− η − α)

) α
1−η−α

(1− η − α)α
α

1−η−α

( η
w

) η
1−η−α

m
−α

1−η−α (H.4)

Optimal Search Intensity Now that we have profit as a function of the supplier’s

marginal cost m in (H.4), we need to solve for search intensity s. Recall that m =

exp(−s)z α+η−1
α . Plugging this into (H.4),

πf (m) =

(
α

1− η − ν(1− η − α)

) α
1−η−α

(1− η − α)α
α

1−η−α

( η
w

) η
1−η−α

exp(−s)
−α

1−η−α z

The relevant part of the firm’s utility function for this problem is the static utility

flow ω log(π) + (1− ω) log(1− s). Plugging in π and solving for s yields

s = 1−
(

1− ω
ω

)(
1− η − α

α

)
(H.5)

Occupational Choice Given the decision rules derived above, the model therefore has

a cutoff rule for occupational choice. To see this, note that because the continuation

values between workers and entrepreneurs are identical, we can focus on the flow

utility payoff. After a bit of algebra, these are

uf (w) = ω log(C1) + (1− ω) log(1− s)− ηω

1− η − α
log(w) + ω log(z)

with constants

C1 =

(
α

1− η − ν(1− η − α)

) α
1−η−α

(1− η − α)α
α

1−η−αη
η

1−η−α exp

((
1− ω
ω

)(
1− η − α

α

)
− 1

) −α
1−η−α

s = 1−
(

1− ω
ω

)(
1− η − α

α

)
More simply for workers, flow utility is uw(w) = ω log(w). Firm operation is preferred

when uf (w) ≥ uw(w), which implies a cut-off z

z = w
1−α

1−η−α exp

(
− log(C1)− 1− ω

ω
log

[(
1− ω
ω

)(
1− η − α

α

)])
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Thus, the cutoff has the feature that log(z) ∝ log(w), where w is the equilibrium

wage.

Proof of Proposition 1 With these results, Proposition 1 follows quickly.

Proof. Plugging (H.5) into the profit function yields

π =

(
α

1− η − ν(1− η − α)

) α
1−η−α

(1− η − α)α
α

1−η−α

( η
w

) η
1−η−α

× exp

((
1− ω
ω

)(
1− η − α

α

)
− 1

) −α
1−η−α

z.

Thus, we have π = A(w)z in equilibrium, where A depends on parameters and the

equilibrium wage w. Replacing m = exp(−s)z α+η−1
α in the equilibrium input price

function (H.3) gives

px =

(
1− η − ν(1− η − α)

α

)
exp

((
1− ω
ω

)(
1− η − α

α

)
− 1

)
z
α+η−1
α

as required. �

H.4 Proof of Proposition 7 (from Social Planner’s Problem)

Proof. Since these are static decisions, they solve the simplified static problem

max
c,s,x,n

ω

∫ ∞
0

log(c(z))dM(z) + (1− ω)

∫ ∞
z

log(1− s(z))dM(z)

s.t.

∫ ∞
z

x(z)αn(z)ηdM(z)−
(

1− η − ν(1− η − α)

α

)∫ ∞
z

exp(−s(z))z
α+η−1
α x(z)dM(z) =

∫ ∞
0

c(z)dM(z)∫ ∞
z

n(z)dM(z) =

∫ z

0

dM(z) ≡ Ns

M(z) given

Note that for simplicity here, we have already imposed a cut-off value for z, z.

Much like the laissez faire equilibrium, it is straightforward to show that the planner

also chooses to set occupations this way.

The first piece to note is that, given the separability of utility in c and s, the

planner allocates a constant level of consumption c(z) = c. Thus, we just need to
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determine total resources in the economy to determine consumption. Solving the

optimal input choices x(z) and n(z) collapses the simplified static planner’s problem

to

max
s(·)≥0

ω log(c) + (1− ω)

∫ ∞
z

log(1− s(z))dM(z)

s.t.

(
α2

1− η − ν(1− η − α)

) α
1−α

(1− α)N
η

1−α
s

(∫ ∞
z

z exp(s(z))
α

1−α−η dM(z)

) 1−α−η
1−α

= c

M(z) given

The first order condition for this problem is

(1− ω)m(z)

1− s(z)
= λC

(∫ ∞
z

z exp(s(z))
α

1−α−ηm(z)dz

) −η
1−α
((

α

1− η − α

)
z exp(s(z))

α
1−α−ηm(z)

)
−λ2

where λ is the Lagrange multiplier on the resource constraint, λ2 is the multiplier on

the non-negativity constraint s ≥ 0, and C is the constant in front of the integral of

the resource constraint. For any z1 and z2 with interior solutions (λ2 = 0), we have

1− s(z2)

1− s(z1)
=

(
z1

z2

)(
exp(s(z1))

exp(s(z2))

) α
1−α−η

(H.6)

Define for ease of notation q(z2/z1, s(z1)) =
(
z1
z2

)
exp(s(z1))

α
1−α−η (1 − s(z1)) and

the transformation −t =
(

α
α+η−1

)
s(z2)−

(
α

α+η−1

)
. After some algebra, we can rewrite

(H.6) as (
qα

η + α− 1

)
exp

(
α

η + α− 1

)
= t exp(t)

The solution to this problem is given by the principal branch of the Lambert W

function,

t = W0

[(
α

η + α− 1

)
exp

(
α

η + α− 1

)
q

]
.

Undoing the transformation and setting z1 = z, if the economy is at an interior

solution to s for all z ≥ z (which we verify at our estimated parameters), we can write

this as

s(z2) =

(
1− α− η

α

)
W0

[(
α

η + α− 1

)
exp

(
α

η + α− 1

)
q(z2/z, s(z))

]
+ 1,

Since q is decreasing in z2 and η+α < 1, that s(·) is increasing follows from the fact
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that that W0 is an increasing function. Concavity similarly follows from properties of

W0. Since W0 is increasing and x exp(x) is convex, its inverse W0 is concave.

�

If there is a corner solution, this analysis remains nearly identical, except one would

instead be required to solve for ẑ = argminz λ2(z) = 0 instead of s(z). That is, the z

at which supplier search intensity becomes positive. While this is not at issue at our

estimated parameters, we of course take this into consideration when counterfactually

varying parameters to study how the quantitative implications change.
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