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Abstract

Can agents in a social network be induced to obtain information from outside their
peer groups? Using a field experiment in rural Bangladesh, we show that demonstration
plots in agriculture — a technique where the first users of a new variety cultivate it in a
side-by-side comparison with an existing variety — facilitate social learning by inducing
conversations and information sharing outside of existing social networks. We compare
these improvements in learning with those from seeding new technology with more
central farmers in village social networks. The demonstration plots — when cultivated
by randomly selected farmers — improve knowledge by just as much as seeding with
more central farmers. Moreover, the demonstration plots only induce conversations
and facilitate learning for farmers that were unconnected to entry points at baseline.
Finally, we combine this diffusion experiment with an impact experiment to show that
both demonstration plots and improved seeding transmit information to farmers that
are less likely to benefit from the new innovation.
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1 Introduction

People commonly rely on their peers for information. Research has established the existence

of such peer effects across a variety of domains, ranging from learning in school to adoption of

new innovations in poor countries.1 Building on the importance of networks for transmitting

knowledge, recent work has sought to answer the question as to who should be chosen as the

initial recipients of information in order to make that information proliferate more extensively

throughout the network? The proven methods for selecting these optimal entry points or

“seeds” include collecting information on the full network in a community (Beaman et al.,

2015) or asking a smaller number of individuals for the right people to seed information

(Banerjee et al., 2018b). These approaches rely on the structure of the social network being

roughly fixed and stable over time. Typically, agents pass information only amongst their

connected peers.

Another strategy — and one that has received less attention in the literature — is to

consider the exchange of information between individuals without existing social ties, and

ask what can be done to encourage individuals to seek out information from outside their

networks? Is it possible for the policymaker to intervene in a way that encourages people

to seek information from off-network sources? Or, are information-sharing relationships

sufficiently rigid to only respond to the selection of optimal seeds within the network? In

this paper we focus on the efficacy of a commonly used technique in agricultural extension,

namely the use of demonstration plots that showcase the features of a new seed variety

relative to traditional varieties. We find evidence suggesting that this low-cost approach

to encouraging learning can effectively substitute for the typically difficult task of finding

optimal entry points in social networks.

We arrive at this conclusion using two related experiments spread across 256 villages

in rural Bangladesh. The first experiment contrasts the two approaches detailed above to

spreading information about a new rice variety called BRRI Dhan 56 (or BD56 for short).2

We introduced the new variety to five farmers, referred to as “entry points” throughout

the remainder of the paper, in a random subset of 192 villages. We then cross randomized

1A non-exhaustive subset of research in this area includes peer effects on academic performance (Sacerdote,
2001), purchases of financial assets (Bursztyn et al., 2014), adoption of improved sanitation in developing
countries (Guiteras, Levinsohn, and Mobarak, 2015), the decision of whether to purchase crop insurance
(Cai, de Janvry, and Sadoulet, 2015), and the adoption of agricultural technology (Foster and Rosenzweig,
1995; Munshi, 2004; Bandiera and Rasul, 2006; Conley and Udry, 2010).

2Effective use of BD56 necessitates a large change in the production process. In short, the variety is
ready for harvest a full month before the common variety being grown in the rainy season. As a result, the
technology provides enough time for a third crop to be grown in between the rainy and dry-season rice crops.
This large change in the cropping system — going from producing two rice crops to producing a third crop
in between — enhances the potential for social learning about BD56 and its attributes.
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villages across two treatments: (1) the selection criteria for entry-point farmers and (2)

the demonstration method, aimed at encouraging other farmers from the village to seek

information. The different treatment cells are described visually in Figure 1.

In terms of selection of entry points, we randomized villages across three different selec-

tion methods. In the first 64 villages we randomly selected farmers (as a benchmark). In the

next 64 villages we relied on the local knowledge of agricultural extension officers (known

as “sub-agricultural officers” or SAO’s) to identify farmers who would be most effective at

demonstrating the features of a new rice variety. In the remaining 64 villages, we ranked

farmers according to farm size and selected the five largest farmers.3 We opted for these

selection mechanisms because they can be implemented at relatively low cost, which is at-

tractive from a policy perspective. Indeed, neither approach requires an expensive survey

nor detailed data collection efforts to characterize social networks.

In the second treatment, we randomized whether farmers were asked to set up demon-

stration plots or not. This treatment was cross-randomized with the selection of entry points

detailed above. This means that 32 villages out of the 64 assigned to a particular “entry-

point” selection arm were also assigned to demonstration plots. There the team assisted

farmers in setting up “head-to-head demonstration plots”, which involved cultivating BD56

alongside a counterfactual seed variety of the farmer’s choosing. We provided two markers

to make comparison across the two varieties more visible — one reading “BD56” and the

other listing the name of the chosen alternative variety — to be placed in the two fields (see

Figure 2 for an example).4 We refer to this treatment as “demonstration plots” throughout

the remainder of the paper. The demonstration plots indicate to other farmers that the

entry point is comparing the attributes of the new variety to a known one. This serves as a

mechanism to focus attention of other farmers on existence of a new learning opportunity.5

In the remaining 32 villages that were not assigned to demonstration plots, the entry points

used BD56 on one of their plots and were provided with a single “BD56” marker. It follows

that the demonstration plots must do more than broadcast information about the existence

of BD56 because farmers in these comparison villages also labelled their field with a marker.

These two approaches to increasing knowledge transmission rely on very different assump-

3We found during piloting that large landholders often act as opinion leaders during focus group dis-
cussions about agriculture. Moreover, other farmers seemed to look at large farmers to learn about new
technology. These casual observations led to the inclusion of the arm where farm size was used to select
entry points.

4This method of demonstration plots is commonly used, especially by private sector seed companies
seeking to promote and demonstrate the attributes of their new seed varieties.

5We didn’t provide any further assistance (such as inputs or advice) with the actual cultivation of the two
plots. This was purposeful to lessen the cost of the demonstration plots treatment, and make the approach
easily scalable.
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tions about how information diffuses in networks. The improved selection of entry points,

using either large farmers or those hand picked by SAO’s, seeks to test scalable approaches to

finding the right influential farmers in the network. Importantly, the notion of optimal seeds

is designed to exploit the network as it exists at baseline, and does not consider that the

intervention itself may change the network. In contrast, the demonstration plots are meant

to spark interest and potentially induce communication beyond existing network links. The

demonstration plots can do so by either 1) capturing attention and thus increasing the de-

mand for information or 2) providing a more precise signal to entry points and therefore

increasing their supply of information to others.

This experiment delivers four main results. First, and using only baseline information,

we verify that the large and SAO-selected entry points are far more central in the village

networks than random seeding, and are thus well positioned to spread information to a

larger number of farmers. At baseline our survey teams visited all farming households in

each village — making a total of almost 22,000 visits — and posed the question “which

farmers in this village do you regularly speak to about rice farming?”6 Using these data, we

observe that the average entry point in the random villages is connected to 4.6 other farmers.

This increases sharply to 8.2 and 9.1 connections for entry points in SAO and large farmer

villages, respectively. Similarly, the eigenvector centrality of entry points increases by 47

percent under SAO selection and 80 percent with large-farmer selection. Based solely on the

network measured at baseline, both treatments would therefore be expected to increase the

spread of knowledge.

Despite these noticeable differences in network centrality, our second result is that demon-

stration plots with random farmers create just as much additional knowledge as entering with

large and SAO-selected farmers. After the harvest of BD56 — and sowing of the next crop

— we conducted a survey with 10 random farmers in each village. In addition to awareness

about existence of BD56 and its basic attributes, we also collected information on reported

conversations about BD56. Using large farmers as entry points increases awareness by 7.4

percentage points or 12.3 percent in villages without demonstrations. Similarly, entry points

selected by extension agents increase awareness by 6.7 percentage points (11.2 percent) in

villages without demonstrations. However, providing seeds to more central farmers provides

no additional benefits for knowledge diffusion when we introduce demonstration plots.

At the same time, setting up demonstration plots increases awareness by 7.2 percentage

points (12 percent) with random entry points. Noticeably, the impact of demonstration plots

6Chandrasekhar and Lewis (2016) show that measures of network centrality are misleading when estimated
using only a sample of nodes within the network. Our approach of fully characterizing the network by
sampling each household in the village alleviates this concern.
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under random selection is of the same magnitude as the impacts of improved entry-point

selection in the absence of demonstration plots. The results remain similar when looking

at the number of reported conversations about BD56: demonstration plots with random

farmers induce conversation by about the same amount as introducing seeds with more

central farmers. Given the ease of setting up demonstrations, i.e. simply placing two signs

in adjacent fields, our experiment offers insight into how interventions that attract attention

to the fact that there is something to be learned can substitute for seeding with more central

entry points in networks.

Third, we then move on to investigate why demonstration plots are effective. The results

are consistent with the idea that demonstration plots cause farmers to learn from people

outside their network. Focusing on the 64 villages with random entry-point selection, we

observe strong peer effects on knowledge. Farmers that were randomly connected to an

additional entry point are 7.7 percentage points more likely to know about BD56. This

average effect differs meaningfully between villages with and without demonstration plots:

an additional connection with an entry point has no effect in demonstration villages, but it

increases awareness by 13.5 percentage points (22 percent) in non-demonstration villages.

In other words, demonstration plots lead to information exchange outside of baseline net-

works and therefore greater transmission of knowledge. In doing so, demonstration plots

entirely eliminate peer effects. The same pattern of results again appears when considering

conversations about the technology.

Also consistent with this network interpretation, we find that demonstration plots were

most effective for farmers that are least connected in the baseline information network —

where connectivity is measured by eigenvector centrality. A plausible explanation of this

result is that the demonstration plots induced these less connected farmers to endogenously

seek information about BD56.

Finally, we show that their network centralities at least partly explain why large and

SAO-selected entry points lead to better information diffusion. The effects of large and SAO

selection on knowledge decrease by 43 and 31 percent, respectively, when conditioning on

the average degree of entry points. In addition, average degree centrality of entry points is

itself positively correlated with BD56 awareness. Conditioning on average degree is not a

perfect test — since the particular network measure that should “knock out” the treatment

effects depends on the specific model of diffusion.7 Nonetheless, the result is consistent with

the idea that diffusion via network links partly explains why the entry-point treatments were

7Degree is a suitable measure if we think of diffusion models with few periods, the probability of passing
information to connected friends is high, and the farmers with the largest degrees are sufficiently spread out
in the network.
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successful.

While we mainly consider effects on knowledge transmission, we also observe uptake

when BD56 was made available for sale at subsidized prices. The results on seed adoption

are noisier, but qualitatively consistent with our observations on knowledge.

Our second experiment allows us to further test whether demonstration plots (or alter-

native seeding strategies) are more likely to deliver information to the farmers most likely to

benefit from the new technology. Returning to Figure 1, we also randomly selected 64 control

villages where we provided a new long-duration rice seed to a set of farmers identified using

the same criteria as in the 192 BD56 villages. This experiment allows us to characterize the

impact of short-duration rice on agricultural practice and profits. The main benefit of the

short-duration seed is the ability to grow a third crop in between the rainy and dry-season

rice crops. Using the machine learning methods developed in Chernozhukov et al. (2018),

we estimate a mapping between baseline covariates and the treatment effect of BD56 on the

number of crops grown. This heterogeneity index serves as a prediction of which farmers are

most likely to benefit from BD56 by increasing cropping intensity.

Using this heterogeneity index with the 192 villages in our first diffusion experiment, we

find suggestive evidence that both demonstration plots and our selection treatments increase

knowledge and conversations only for farmers that have below-median expected treatment

effects of BD56 on the number of crops grown. In other words, intervening to increase

knowledge diffusion in networks may only be effective for farmers with lower expected ben-

efits from adopting an innovation.8 These findings point to an important consideration for

research that studies alternative mechanisms for increasing diffusion of products that have

heterogeneous benefits. Combining diffusion experiments with standard impact evaluations

allows the researcher to estimate treatment effect heterogeneity and use that to measure

which diffusion strategies reach the people most likely to benefit from an innovation, even

without a strong prior on which observables drive the heterogeneity.9

We then go on to show how a simple diffusion model, when amended to allow for formation

of new links with entry points, explains our pattern of results. In the model, farmers can

either become informed by receiving information flowing through the structure of existing

links, or by actively communicating with entry points. Farmers in the worst position to learn

8An alternative explanation is that the diffusion treatments succeeded in informing farmers that were
the least likely to benefit from BD56, and therefore prevented their adoption. This explanation is less
consistent with the positive (but noisy) point estimates we observe when estimating the effects of the diffusion
treatments on seed adoption.

9Rigol, Hussam, and Roth (2017) is the closest example where the authors use machine learning methods
to estimate treatment effect heterogeneity for microfinance in India. They then show that using community
information on the returns to microfinance is more effective than the machine learning algorithm when
applied to the set of observables in their baseline data.
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from the network, i.e. those that are the least connected to entry points, benefit from having

the opportunity to engage directly with entry points. The demonstration plots treatment

appears to deliver these benefits by inducing unconnected and more isolated farmers to learn

directly from entry points.

Turning to literature, theoretical work has considered information transmission when

network communication is endogenous (Acemoglu, Bimpikis, and Ozdaglar, 2014; Calvó-

Armengol, Mart́ı, and Prat, 2015), but empirical work in this area is scarce. Mobius, Phan,

and Szeidl (2015) show that having conversations is correlated with possessing the correct

information in a field experiment amongst college students, but that frictions still exist in

the diffusion of information. Chandrasekhar, Golub, and Yang (2016) make an important

contribution by considering one particular friction arising with endogenous social learning:

the need for information can reveal low skill, therefore creating a stigma effect that represents

part of the costs of information seeking. Banerjee et al. (2018a) show evidence consistent

with this same idea during India’s recent demonetization. In particular, villagers were less

willing to seek information about demonetization rules when everybody knew that informa-

tion was provided widely and thus seeking information signals an inability to process one’s

own information. Our experiment delivers insights on the potential to intervene to induce

communication, overcome some of these frictions, and therefore facilitate social learning.

Looking for ways to induce communication and learning builds on an active literature

that treats networks as fixed and asks how to find the optimal entry points within these

networks. These studies include demonstration of agricultural inputs (Beaman et al., 2015;

Beaman and Dillon, 2017), diffusion of information about microfinance (Banerjee et al.,

2013), diffusion of health products (Kim et al., 2015), and information on how to capitalize

on a financial opportunity or the uptake of vaccines (Banerjee et al., 2018b).10 There are

a couple of limitations with this approach. First, it can be difficult to identify the most

central entry points in a social network without fully characterizing the network, which

may be cost prohibitive.11 Second, the efficacy of finding better entry points for seeding

information likely depends on the underlying structure of the social network or the specific

model of diffusion (Centola, 2010; Valente, 2012; Golub and Jackson, 2012). Akbarpour,

Malladi, and Saberi (2018) show that in many network structures the benefits from seeding

information with a slightly larger number of agents outweigh the benefits of identifying the

most central individuals. Our experiment considers scalable methods of entry-point selection

10In addition to selection, other work has looked at different ways of making entry points communicate
more, including compensation (BenYishay and Mobarak, 2015) and training (Kondylis, Mueller, and Zhu,
2017).

11Banerjee et al. (2018b) show how to overcome this difficulty by asking a sample of villagers who are the
important people for diffusing information.
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as a benchmark and shows that their benefits can also be obtained by interventions that

trigger social learning.

Focusing on agricultural development and policy, learning frictions is one of the frequently

proposed reason why farmers do not adopt new technology.12 Agricultural extension is

expected to serve as the policy tool to improve learning. In practice, the standard method

of agricultural extension attempts to leverage social learning by seeding information with

contact farmers (entry points) and relying on information diffusion through social networks

(Birkhaeuser, Evenson, and Feder, 1991; Anderson and Feder, 2007; Kondylis, Mueller, and

Zhu, 2017). Our experiment provides evidence on how demonstration plots can offer a

substitute for the policymaker when improved selection of these contact farmers is difficult

to implement.

The remainder of this paper is organized as follows. Section 2 discusses the design and

implementation of the experiment, data collection, and basic characteristics of the sample.

Section 3 presents each of our individual results, focusing on how selection and demonstra-

tion plots influence learning, and on understanding what drives the effectiveness of the two

approaches. Section 4 outlines a simple theoretical framework that is consistent with our

results. We then provide an overview and discuss implications of the findings in the final

section.

2 Overview of the Experiment

In this section we review the details of the randomized control trial: the sampling strategy,

the experimental design, and the data collection activities. We conducted the study in 11

sub-districts (upazilas) scattered across 3 districts of Rajshahi division, consulting with the

Department of Agricultural Extension to identify upazilas that were suitable for the rice

variety being introduced.13 We randomly selected 20% of the villages with not more than

150 households, resulting in a final sample of 256 villages. This includes the 192 villages

that received the new BD56 rice variety in the diffusion experiment, as well as 64 control

villages that received the longer duration rice variety for the impact evaluation experiment.

This village-level randomization was stratified by upazila.

BD56 has two key features. First, it requires less water, allowing farmers to save on

supplemental irrigation fees and preserving groundwater resources. Second, it matures ap-

proximately 25 days earlier than other varieties commonly planted in the area, providing

12In addition to learning, numerous studies highlight a wide range of explanations, including behavioral
biases, profitability, and risk (Duflo, Kremer, and Robinson, 2011; Suri, 2011; Karlan et al., 2014; Emerick
et al., 2016; Cole, Giné, and Vickery, 2017).

13See Figure A1 for the location of the 11 upazilas included in the study.
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farmers with the option of harvesting and selling an additional crop between the two rice

seasons (Aman and Boro rice seasons last from June/July to October/November and Decem-

ber/January to April/May, respectively). The 64 control villages received a long duration

rice variety called BRRI Dhan 51 (BD51) which was chosen due to its similarity to the most

popular variety at baseline.14

2.1 Experimental Design

Figure 1 summarizes the experimental design for the diffusion and impact evaluation ex-

periments detailed below. The design for the diffusion experiment consists in the cross-

randomization of two dimensions of treatment across 192 villages: the method used to select

the five seed recipients, and the implementation of “demonstration plots” by these entry-

point farmers.

For the first dimension, the villages were subdivided into three groups of 64 villages each.

The types of farmers we selected to receive the seeds (the “entry points”) differed based on

the specific treatment arm that village was assigned to. In the first group of 64 villages, the

seeds were distributed to five farmers selected at random. In the second group, we ranked

farmers by landholding sizes and distributed 5kg minikits of BD56 seeds to the top five

farmers. In the third group of 64 villages, we asked the Sub-Agricultural Officer (SAO) to

identify five farmers in the village that would be effective at demonstrating the new variety

and provided BD56 seeds to them.

Within each group of 64 villages, we then selected 32 villages to receive additional as-

sistance setting up demonstration plots. We included this additional dimension in the ex-

periment to determine how this approach to boosting diffusion rates compared with the

alternative of selecting entry points that rely on the underlying social networks to spread in-

formation. To this end, we asked farmers to select a counterfactual variety that they would

like to plant beside the new BD56 seeds we distributed. We then provided two sticks to

farmers: one with the name of the new variety (BD56), and another with the name of the

variety they had selected to plant beside it. We asked that farmers keep these two signs in

their fields throughout the cropping season to showcase the performance of BD56 relative to

the counterfactual they selected. Farmers in the remaining 32 “non-demonstration” villages

received a single sign for their BD56 plot. The provision of the single sign ensures that any

effect we detect in the demonstration plot villages with two signs goes beyond the attention

14BD51 is released as “Swarna-Sub1” in India and several other countries. Emerick et al. (2016) show that
Swarna-Sub1 is similar to Swarna, besides Swarna-Sub1 being more flood tolerant. However, our sample is
not a flood prone area. We introduced Swarna-Sub1 in the control villages because Swarna is not officially
released in Bangladesh (and thus not available for sale) despite being the most popular variety in our sample
at baseline. More precisely, 77 percent of farmers in the village census reported growing Swarna at baseline.
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effect of placing one sign in the field.

For the impact evaluation experiment, we selected up to 15 “counterfactual” farmers to

receive equal sized amounts of BD51 seed in each of the 64 control villages. This included

five farmers with the largest landholdings, five farmers selected by the SAO, and five farmers

selected at random. These sets overlapped in some cases and therefore the number of farmers

per control village is occasionally less than 15. Identifying these particular farmers in control

villages was necessary in order to compare how the entry points we identified in the treatment

groups cultivated BD56 relative to the longer duration counterfactual we distributed in the

control villages. In the rest of the paper we refer to these counterfactual farmers as ”entry-

points” as well.

2.2 Timeline and Data Collection

Census with network information of each village

Figure 3 presents a complete timeline of the study. We began by performing a complete

census of each village in March 2016. Our field team surveyed 21,926 households over the

period of three months. Villages have between 14 and 184 households, 86 on average. We

administered a short questionnaire to each member of the village, asking about their agri-

cultural production (landholdings size, fertilizer use, production, and varieties sown), and

their social networks (the name of the person they considered to be the best farmer, and

the names of up to 10 farmers they turn to for advice on rice cultivation). We use these

data to identify the largest farmers in each village, select the random entry-points, compute

network statistics, and to forecast heterogeneous impacts of BD56 as a function of observable

covariates.

Seed distribution

The distribution of 5kg minikits to the farmers selected to be entry-points in all 256 vil-

lages took place in early June 2016, in time for the Aman season. A total of 1,795 farmers

were reached, achieving a response rate of 99 percent.15 During these visits, the field team

carefully explained the features of the seeds being distributed, and provided farmers with

calendars to record the dates crops were sown, harvested, irrigated and applied with inputs.

We also supplied farmers in the treatment villages with sticks and cards to place in their

fields as a way of demonstrating to other farmers the variety they were planting. We briefly

visited farmers 6 weeks later to make sure that we answered any remaining questions they

had about the seeds, and to verify that the sticks were properly displayed in the fields.

15The total number of entry points is five per BD56 village, or 960, and up to 15 counterfactual farmers
in the BD51 control villages. All 960 BD56 entry-points were reached, as well as 835 counterfactual farmers.
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Information diffusion survey

In April 2017 we visited all treatment villages, and randomly selected 10 additional farmers

to conduct a small survey to determine if they had any knowledge of the BD56 seeds that

were distributed to the entry points 9 months earlier. Specifically we asked whether they had

heard about the new variety, which farmers they spoke to, and whether they could articulate

some of the variety’s key features. We use this information to assess how the diffusion of

BD56 knowledge differs based on the village’s treatment status.

Seed sale

In early June 2017, we visited each treatment village in our sample to sell 5kg and 2kg

bags of BD56 seeds at subsidized prices. The field team called a select sample of farmers in

each village to inform them about the date and time of the seed sale. The sample included

the original minikit recipients, and the ten randomly selected farmers who were surveyed

about their BD56 knowledge 2 months prior. The field team travelled to each village on the

pre-determined date, and set-up their truck in the middle of the village (often at the local

market) with a large sign indicating that the new BD56 seeds were available for purchase

and that the main benefit of the seed is that its shorter duration allows for an additional

crop to be grown. They recorded each sale that was made in a tablet. While we did not

record the identity of the buyer, the survey provides a measure of BD56’s diffusion within

the village. Unfortunately, we ran out of seeds before traveling to all of the villages, and

hence this information is only available for 168 of the 192 villages.

Agricultural surveys of entry-points.

In addition to the main sources of data described above, we conducted a series of agricultural

surveys with the entry-points in all 256 villages. The goal of these surveys was to rigorously

establish the impact of BD56 on agronomic practices, cropping intensity, and annual income.

A baseline survey was administered at the time of the minikit distribution in June 2016.

Important outcomes of interest included area cultivated, plot-level information on crops

sown, inputs, and production volumes. We asked farmers to provide this information for 3

of their plots, which we selected randomly when farmers had more than 3.

This survey was followed by three other rounds in order to fully characterize annual

production. In January-February 2017, we collected detailed information about the recently

harvested Aman rice crop, and recorded whether farmers were planting a second post-Aman

(known as the Rabi season) crop (midline 1). The survey asked specifically about seed

variety choice, planting methods, and production at the plot level. In April 2017 we collected
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additional information about the Rabi crop, and the final Boro rice crop (midline 2). Finally,

in August 2017, we asked farmers about their crop production levels during the Boro rice

season, as well as their crop choice for the 2017 Aman rice season in order to gauge their

propensity to re-plant the new rice variety (BD56) that we had offered them the previous

year (endline). All surveys successfully reached the initial 1,795 farmers, except for two

farmers missing in the April survey.

2.3 Baseline Characteristics from Census Data

Table A1 presents summary statistics from the household census and verifies randomization

balance.16 Our sample consists primarily of farmers cultivating long-duration rice varieties

(only 1.17% of treatment farmers and 2.4% of control farmers planted short-duration varieties

in the 2015 crop cycle). While approximately 35% of farmers only grow rice throughout the

season, a non-negligible share grow a Rabi crop (including wheat, potato, pulses, onion, and

garlic). Finally, farms in the sample are small: average area sown with Aman rice (the main

crop) is approximately 1.33 acres.

We asked farmers to provide the names of up to 10 farmers they talked to about rice

farming during last Aman season. We define two farmers as being connected or being peers

if either name the other among the farmers they talk to. We use this information to create

various centrality statistics including degree centrality (the number of connections a person

has), eigenvector centrality and betweenness centrality (the number of times a node acts as a

bridge along the shortest path between two other nodes). Figure 4 displays the distribution

of these three measures for the entire sample of households interviewed during the census.

Farmers have on average 4 connections with whom they talk to about rice cultivation, though

we see a strong right tail with some farmers having up to 26 connections. The distributions

of eigenvector and betweenness centrality display similar patterns with long right tails: while

most farmers have a few connections some have a disproportionately high number. The long

right tails in the distributions provides some initial evidence that the agricultural information

networks do have some highly central farmers that in theory would serve as more effective

entry points.

16Table A2 further shows randomization balance for the sample of entry points, for the impact evaluation
experiment.
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3 Results

We now provide our main results — starting with differences between entry points in their

social network status. We then seek to understand how entry points demonstrated the at-

tributes of BD56, by comparing them to the farmers growing long-duration rice in the control

villages. Building on these results, we focus on how the demonstration plots affect awareness

and how these effects compare to the selection treatments. We argue that the efficacy of the

demonstration plots is being driven by their ability to induce new communication links. In

contrast, additional evidence suggests that the standard diffusion model in networks explains

much of the effectiveness of our selection treatments. Finally, we combine our different data

sources to test whether the treatments deliver information to farmers most likely to capture

BD56’s main benefit by increasing cropping intensity.

3.1 The network centrality of entry points

Recent literature has tested various mechanisms for identifying the most central nodes in

social networks. These mechanisms include both direct elicitation of the entire social network

(Beaman et al., 2015; Kim et al., 2015) or trying to infer centrality by asking a sample of

individuals who is suitable for diffusing information (Banerjee et al., 2018b). Compared

to eliciting the entire network, our two methods of selecting entry points are generally less

demanding in terms of data; entering with large farmers requires only administrative data

on farm sizes and SAO-based selection requires only a short interview with an agricultural

extension agent. Yet, despite their ease of implementation, there is no guarantee that either

of these two methods will deliver the entry points that are theoretically optimal for diffusion.

We first check this using our social network survey.

The main measures of network centrality all differ noticeably between random entry

points, those identified by SAO’s, and the largest five farmers in the village. Table 1 displays

average characteristics for the 960 entry points across the 192 BD56 treatment villages. The

average farmer that was selected randomly has about 4.6 connections with other farmers in

the village. The entry points selected by SAO’s have an average of 8.14 connections and the

five largest farmers in each village have an average degree of 9.04. Eigenvector centrality of

entry points increases by 47 percent when selected by SAO’s and 80 percent when chosen as

the five largest farmers in the village. Banerjee et al. (2013) introduce diffusion centrality

of farmer i as a measure of the expected number of times that farmers obtain a piece of

information that was introduced with i.17 Comparing to random entry points, average

17This measure requires as parameters the number of periods for the diffusion process and the probability
that an informed agent passes information to their social connections. We set the number of periods to 5 and
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diffusion centrality of SAO-selected entry points is higher by 0.64 standard deviations and the

diffusion centrality of large entry points increases by 0.87 standard deviations. Figure A2 in

the appendix shows the cumulative distribution functions of the different network centrality

measures across the selection treatments. Most importantly, the increases in centrality for

large and SAO farmers occur throughout the distributions.

These findings deliver an important verification that our experiment compares demon-

stration plots to meaningful methods of selecting entry points. Put differently, the SAO and

large farmers in theory would be suitable for demonstrating technology in order to spread

awareness. The high centrality of large and SAO farmers — relative to random entry points

— is comparable to other mechanisms to selecting entry points that have been tested in the

literature. For instance, Banerjee et al. (2018b) find that the median diffusion centrality of

people identified by other villagers as suitable for spreading information is larger than that

of other villagers by around 0.5 to 1 standard deviations. We find that relative to random

targeting, larger farmer targeting would increase median diffusion centrality by around 0.51

standard deviations (Figure A2).

Besides network centrality, Table 1 also shows how several other observable characteristics

vary across the different types of entry points. There are two notable observations. First,

SAO-selected entry points tend to be larger farmers: farm size increases by about 5.9 bigha (3

bigha = 1 acre) for SAO entry points relative to random farmers. We show in Table A3 that

controlling for farm size reduces substantially the gaps in network centralities between SAO-

selected and random farmers. Put differently, extension officers could use knowledge of farm

size in selecting entry points, and this explains part of the reason why SAO-selected entry

points are more influential in networks. The ability of extension agents to select influential

entry points contrasts with Beaman et al. (2015) who find that Malawian extension agents

possess little information on the optimal entry points within social networks. The sharp

correlation between farm size — an easily observable characteristic — and network centrality

offers one possible explanation for the greater ability of extension agents in our sample. This

phenomenon is visually evident in Figure 5 where we show the network structures for 6

randomly selected villages with either SAO or large-farmer selection. All three of the large-

farmer villages in the top panel of the figure have at least one relatively larger farmer that is

well connected in the network. Focusing on the SAO-selection villages in the bottom panel,

both village 99 and 224 have medium or larger size farmers that are central in the network

and were selected as entry points by the SAO.

Second, our door-to-door census asked each household to list the “best farmer” in the

the information passing probability to 0.5. We also normalize the measure by subtracting the village-specific
mean and dividing by the village-specific standard deviation.
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village. A random farmer is only named about 0.79 times while SAO entry points are named

5.27 times, and the five largest farmers in each village 6.4 times. These numbers further

suggest that our selection treatments identify entry points that are both better networked

and that other farmers consider to be knowledgeable about agriculture.18

3.2 How do entry points demonstrate the technology?

In this section, we use the impact evaluation experiment to explore how BD56 affect farmers’

cultivation practices and profits.

3.2.1 Take up

During the first midline survey we asked farmers whether they planted the seeds provided to

them. We do not find any evidence of differential adoption rates (Table A4). Focusing ex-

clusively on treatment villages, we further investigate whether take up varies across different

types of entry points. We find that adoption rates remain fairly consistent across treatment

arms, albeit slightly higher among large farmers assigned to the demonstration plots (Col-

umn 3). This last finding would suggest that the potential impacts of demonstration plots

should be greater among large farmers because of the higher adoption rates, a result working

against our main findings presented later in the paper.

3.2.2 Cultivation practices and profitability

The intervention affected cropping systems. Farmers planting BD56 harvested those fields 25

days earlier than farmers sowing BD51 (in late October rather than mid November) (Table

A5 and Figure A3). Treatment farmers used this additional month between their two rice

crops to increase the likelihood of planting a post-Aman (Rabi) crop. On average, BD56

plots were 27.8 percentage points more likely to be sown with the Rabi crop than BD51 plots

(Table A5). Mustard, pulses, and potatoes were the most frequent short-season Rabi crop

induced by the treatment.

Importantly for knowledge diffusion, this change in cropping systems is heterogeneous by

type of entry point. The treatment effect for growing the Rabi crop is 17 and 11 percentage

points higher for large and SAO farmers, respectively (Table A6). Because growing additional

crops is such a visible activity, this offers a potential mechanism as to why knowledge diffuses

faster with large and SAO selection — a possibility we investigate in Section 3.4.

18The number of nominations as the best farmer is correlated with network centrality. It explains 44 percent
of the variation of degree centrality, 32 percent for eigenvector centrality, and 41 percent for betweenness
centrality.
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While the BD56 treatment led to a sharp increase in cropping intensity, we still observe

that 46 percent of the BD56 plots were left fallow in between the two rice crops.19 In addition,

BD56 naturally leads to lower yields given its shorter duration: the yield of BD56 plots was

31 percent lower than that of the longer duration BD51 plots. We also discovered that BD56

fetched a slightly lower market price, which farmers attributed to less familiarity by millers.

In combination, profits during the Aman season were lower by 4,576 taka for BD56 plots, or

around 44 percent (Table A7).

The average gain in profit from Rabi cultivation is 1,436 taka (60 percent). Assuming

all of these benefits come from the extensive margin of growing the crop, BD56 led to an

increase in Rabi profits of 5,241 taka for farmers that complied by growing the additional

crop afforded by the treatment. This suggests that the technology was profitable among the

subset of farmers who fully complied by planting the Rabi crop, but was not profitable on

average since not all farmers capitalized on this main benefit of the technology.

3.3 How does knowledge diffuse across treatments?

Do demonstration plots increase awareness about new technology? If so, how do these effects

compare to those generated by improved selection of entry points? The follow up information

survey in the 192 BD56 villages allows us to answer these questions. The farmer-level

specification compares awareness across the six different arms of the diffusion experiment.

The corresponding regression is

awareivs = β0 + β1RandomDemovs + β2SAONoDemovs + β3SAODemovs

+ β4LargeNoDemovs + β5LargeDemovs + αs + εivs,
(1)

where the dependent variable is an indicator for whether farmer i in village v and upazila

s is aware of BD56, SAONoDemovs is an indicator for villages with SAO selection and no

demonstration plots, and the remainder of the variables are defined analogously. As in all

of the analysis, we include strata (upazila) fixed effects and cluster standard errors at the

village level.

The results in Table 2 deliver three insights. First, the demonstration plots increase

knowledge when cultivated by randomly selected farmers. Specifically, the rate of awareness

increases by 7.2 percentage points when random farmers grow BD56 side by side with a

chosen comparison variety. Sixty percent of farmers were knowledgeable of BD56 in control

19There are a number of explanations including that farmers were not prepared to grow an additional crop
when the rice matured much earlier than anticipated (despite being told of the duration when receiving the
seeds), an inability to access land with plows when it is surrounded by maturing rice, and lack of access to
capital for planting an additional crop.
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villages, meaning that the treatment effect of demonstration plots amounts to a 12 percent

effect. The large rate of awareness in RandomNoDemo villages (the omitted category)

shows that information diffuses, even under the benchmark where entry points are random

and demonstration plots are absent.

Second, the demonstration plots have no effects when cultivated by the better-connected

large and SAO farmers. The estimates of β2 and β3 are nearly identical, meaning that the

demonstration plots didn’t spread knowledge with SAO selection. Similarly, the estimates

of β4 and β5 indicate that adding demonstration plots failed to increase awareness with

large-farmer entry points.

Third, the effect of demonstration plots with random farmers is roughly the same mag-

nitude as the effects of entering with large and SAO farmers. As we would expect based on

their network connections, entering with large and SAO-selected farmers increases awareness.

Amongst non-demo villages, SAO selection increases awareness by 6.7 percentage points (11.2

percent) and entering with the largest farmers increases awareness by 7.4 percentage points

(12.3 percent). These effects are quite similar and statistically indistinguishable from the

effect of demonstration plots with random entry points. Moreover, the demonstration plots

eliminate the effects of targeting more central farmers. Specifically, the estimates of β1, β3,

and β5 are indistinguishable.

Columns 2 and 3 of Table 2 show effects on the number of conversations farmers reported

having about BD56. While somewhat noisier, these data are also consistent with the demon-

stration plots creating just as much conversation as the improved selection of entry points.

The demonstration plots led to 0.12 more conversations per farmer about BD56 when entry

points were selected randomly (col. 2), almost all of which with entry points (col. 3). This

14 percent effect is similar to the effect on knowledge reported in column 1. Focusing on the

mean outcomes, the average respondent in the control villages reported 0.84 conversations

about BD56, 0.72 of which were with the entry points, and by difference 0.12 were with

any of ten other randomly selected farmers that each farmer was asked about. Importantly,

the reported conversations should not be interpreted as the total number of conversations

about BD56, but rather the number of conversations with the 15 farmers asked about in our

survey.20

The data on conversations help to rule out an alternative explanation where the side-by-

side comparison — and two markers in the field — was more effective at simply broadcasting

information on the existence of BD56. Instead, the demonstration plots caused farmers to

engage in social learning, rather than just learn about the new technology from the sign in

20We collected information on conversations between the respondent and the five entry points as well as
10 randomly selected other farmers for each village.
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the field.

3.4 What mechanism explains the effects?

We highlight one mechanism which makes the demonstration plots work. Once allowing for

endogenous communication across network links, the demonstration plots make people pay

attention to farmers outside of their immediate network. This mechanism is consistent with

the entry-point selection effects being eliminated by demonstration plots. The 64 villages

with random entry-point selection allow us to further consider this mechanism. Within these

villages, the number of entry points in a farmer’s network is as good as randomly assigned

when conditioning on the total number of connections of that farmer.21 As a result, the

average effect of being connected to an additional entry point can be estimated with

awareivs = β0 + β1Entry Point Peersivs + β2Total Peersivs + αs + εivs, (2)

where Entry Point Peersivs is the variable measuring how many of the five entry points

farmer i is connected to and Total Peersivs is the network degree of farmer i. Under our

framework the demonstration plots should make baseline relationships less important for

awareness, i.e. cause a decrease in β1.

The average peer effects are indeed consistent with social learning. Column 1 in Table 3

shows that being connected to an additional entry point increases awareness by 7.7 percentage

points, i.e. about 12 percent. More interestingly, the second column shows that this social

learning only exists in villages without demonstration plots. An additional connection to an

entry point increases knowledge by 13.5 percentage points without demonstration plots, but

when entry points set up head-to-head demonstrations this effect goes down significantly to

only 1.9 percentage points. In addition, the demonstration plots only increase learning for

farmers that were unconnected to entry points at baseline. Demonstration plots increase

awareness by 11.3 percentage points for farmers having no baseline connections to entry

points. The effect disappears with just one connection to an entry point as the coefficient

on the interaction term is nearly identical to the coefficient on the demonstration villages

indicator. The similarity of the effects points to how the demonstration plots substitute for

social connections to entry points: the increased awareness generated by demonstration plots

is nearly the same as the peer effects in non-demo villages. Lastly, measuring connections

with a binary variable for being connected to at least one entry point does not change the

results (columns 3 and 4).

21Miguel and Kremer (2004) use a similar strategy when estimating spillover effects from deworming in
Kenya.
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Table A8 shows the analogous results where the dependent variable is instead the number

of reported conversations between respondents and entry points. The results are consistent

with those on knowledge. The demonstration plots induced conversations between entry

points and farmers that were outside of their baseline information networks.

Finally, the demonstration plots were only effective for the least networked farmers. We

investigate this by limiting to the random-entry-point villages and estimating

awareivs = β0 +β1Demovs +β2Eigenvectorivs +β3Eigenvectorivs ∗Demovs +αs + εivs, (3)

where Eigenvectorivs is the baseline eigenvector centrality of farmer i. The estimated coeffi-

cient on the interaction term β3 measures whether the demonstration plots had a differential

effect for farmers that were more central at baseline. Intuitively, the more connected farmers

have a number of ways (both direct and indirect) to find out about BD56. In contrast, the

least central farmers are the most likely to benefit from making new connections to entry

points.

Table 4 shows that the effect of demonstrations varies significantly according to the

farmer’s eigenvector centrality. The coefficient on the interaction term (β3) is negative and

precisely estimated. The magnitude of the coefficient is large. Going from the 10th to the

90th percentile of the eigenvector centrality distribution causes the effect of demonstrations

to go from 0.165 to -0.022. Put another way, demonstration plots become ineffective for the

most central farmers in the network.

This evidence favors the explanation that demonstration plots substitute for social learn-

ing in networks. This substitution also offers an explanation for why the identities of entry

points become irrelevant when they cultivate demonstration plots. Demonstration plots ef-

fectively cause farmers to pay attention, thus “turning off” peer effects and eliminating the

need to rely on information being transmitted from entry points to other farmers. Rather,

the demonstration plots induce information to flow to people that would have otherwise been

excluded from peer-to-peer social learning.

In contrast to inducing conversations in endogenous social networks, the baseline network

structure explains part of the effects of SAO and large-farmer selection. Any network-based

model of diffusion with an exogenous network would favor targeting more central entry

points. As a result, the effects of SAO and large-farmer selection would be predicted to

decrease when conditioning on the average centrality of entry points. The data show exactly

this. Table 5 shows that conditioning on the average degree centrality of entry points (moving

from column 1 to 2) causes the effects of large and SAO selection to decrease by 43 and 31
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percent, respectively.22 In addition, the average degree of entry points is strongly correlated

with knowledge diffusion. We of course can not provide a causal interpretation of this

parameter. The exercise instead offers evidence that the ability of large and SAO entry

points to increase knowledge is due to their more central network positions.

Beyond network centrality, the act of growing the additional crop — something more

likely done by large and SAO farmers — appears to have captured attention and resulted in

increased knowledge of BD56. Column 3 shows that the effects of large and SAO selection

also decrease when conditioning on the number of entry points that planted a Rabi crop on

their BD56 plot. The effects of large farmer and SAO selection are smaller by 63 percent

and 51 percent, respectively, when conditioning on both degree centrality and the choice of

growing a Rabi crop.

The villages with random and SAO-based selection also include large farmers as entry

points. At least one of the five largest farmers was selected as an entry point in 19 of the 64

random villages and 38 of the 64 SAO selection villages. Table 6 shows analysis where we

compare villages where at least one large farmer was targeted with those having no large-

farmer entry points.23 We find similar results when exploiting this variation. In column 1,

having at least one large-farmer entry point increases awareness by 7.9 percentage points in

non-demonstration villages. Similar to the previous analysis, conditioning on the average

network degree of entry points and the number growing the Rabi crop absorbs much of this

effect (columns 2 and 3). Introducing demonstration plots makes these effects disappear.

Columns 4-6 show that hitting a large farmer has no effect in demonstration villages and

that the correlation between the degree centrality of entry points and awareness is much

weaker with demonstration plots.24 Consistent with the other findings, the demonstration

plots decrease the relevance of the baseline social network for knowledge diffusion.

In sum, two attributes explain much of the reason why the selection treatments were

effective. First, large and SAO farmers are more central in the network and therefore share

information with more farmers. Second, these farmers do a better job of showcasing the

benefits of new technology. Nonetheless, despite these two mechanisms, demonstration plots

with random farmers are equally effective at spreading awareness about new technology.

22We limit the data to the non-demo villages for this analysis since the selection treatments are only
effective in these villages.

23We only worked with SAO’s to select entry points in the 64 SAO villages and the 64 BD51 villages. We
therefore can’t repeat this analysis using SAO-identified farmers rather than large farmers.

24Table A9 gives the statistical test showing that across all villages, the impact of hitting at least one large
farmer is significantly smaller in demonstration villages.
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3.5 Effects on seed purchases

Awareness about new technology is our main outcome variable. In addition to information

diffusion, we also obtained data on purchases of BD56 seeds. A local NGO visited each

village prior to the 2017 rainy season — a year after BD56 had been introduced in the

village. The NGO set up a small stand and made BD56 seeds available to any farmer

wishing to purchase. Importantly, the seeds were subsidized at a rate of 60 percent, and

farmers visiting the shop were told that BD56 shortens the season, gives lower yield relative

to longer duration varieties, but allows for an additional crop to be grown during the year.25

The NGO representative explained to farmers that a third crop is needed to make BD56

profitable on an annual basis.

Table 7 shows regression results akin to Equation (1), but at the village level where the

dependent variable is either the number of farmers purchasing or the adoption rate (number

of buyers divided by village size). The point estimates are much noisier, but the coefficients

are sizable and the directions line up with what we observe on knowledge diffusion. About

1.7 farmers purchased seeds per village in control villages, and this increased by around 0.67

farmers (40 percent) when adding demonstration plots. The number of farmers purchasing

seeds also increases in large and SAO villages. Turning to column 2, the degree centrality

of entry points and the number growing the third crop are positively correlated with the

number of purchasing farmers and absorb some of the selection effects. Columns 3 and 4

show that the pattern remains when considering the share of farmers purchasing, rather than

the absolute number. Overall, the coefficients in Table 7 show a similar pattern to what we

observe on awareness creation, despite being less precisely estimated.

3.6 Who becomes informed from the different treatments?

Combining our two experiments (diffusion and impact evaluation experiments) give a unique

opportunity to test whether alternative mechanisms for encouraging information diffusion

deliver information to the people expected to benefit the most from new technology. Cap-

turing the short-duration benefits of BD56 requires growing an additional short-season crop

— an action that was not universally taken by farmers in our BD56 treatment group (Table

A5). We next ask two questions (1) do observable characteristics explain variability across

farmers in the treatment effect of BD56 on the number of crops grown across the year and (2)

do the demonstration plots or the entry-points selection strategies differentially inform the

farmers who, based on these same observable characteristics, are the most likely to increase

25That year the government rate for BD56 seed ranged between 34 and 40 tk/kg. The NGO sold the seeds
for 15tk/kg.
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their number of crops grown when adopting BD56?

We start by using the impact experiment to estimate a function measuring the treatment-

effect heterogeneity of BD56, which we refer to as the heterogeneity index. The first step

is to implement the method suggested in Chernozhukov et al. (2018) to generate a linear

prediction of the ATE conditional on the observed covariates from our door-to-door census,

denoted as zi. Our sample of treatment and control farmers is first divided into two samples:

one “training” sample where we seek to estimate the heterogeneity index, denoted as s0(zi),

and another “validation” sample where we seek to measure whether this estimate ŝ0(zi) is

a significant determinant of the heterogeneous treatment effect of BD56 on the number of

crops grown. First for the training sample, we estimate separate LASSO regressions for the

treatment and control groups to pick which of the covariates in z predict the number of crops

grown y. Using these covariates, we generate estimates of the conditional expectations of the

number of crops grown as E(yi|Di = 1, zi) and E(yi|Di = 0, zi).
26 The difference between

these two conditional expectations serves as the heterogeneity index, ŝ0(zi).

Turning to the validation sample, we want to verify that the treatment effect varies

according to this measure ŝ0(zi). We do this in two ways. First, we add an interaction

between the treatment indicator and ŝ0(zi)− s̄ in a regression where the dependent variable

is the number of crops grown.27 Second, we estimate separate treatment effects for the four

quartiles of the distribution of ŝ0(zi). Finally, this process is iterated 100 times, delivering

100 separate sample divisions and 100 estimates of the heterogeneity index.

The observed covariates predict treatment-effect heterogeneity in the validation sample.

Figure 6 shows the 100 estimates of the ATE and the linear heterogeneity term. The het-

erogeneous effect is almost always larger than zero, suggesting that the heterogeneity index

ŝ0(zi) does proxy for the true heterogenous effect of BD56 on the number of crops grown.

In other words, farmers with larger values of ŝ0(zi) appear more likely to increase cropping

intensity if adopting short-duration rice. Figure 7 shows the separate treatment effects by

quartile of the heterogeneity index. Treatment effects increase with the heterogeneity index

and are largest in the top two quartiles of the distribution of ŝ0(zi).

We then return to the diffusion experiment in 192 villages to test whether the treat-

ment effects differ based on values of the heterogeneity index. We possess 100 estimates

of ŝ0(zi) for each of the 1,920 farmers for which we elicited knowledge of BD56. We take

the median of ŝ0(zi) across these 100 sample divisions and estimate whether the treatment

26We use the OLS regressions with the covariates selected by the two LASSO procedures. The selected
covariates can be different in the treatment and control groups.

27The coefficient on the treatment indicator in this regression measures the average treatment effect, while
the coefficient on the interaction between treatment and ŝ0(zi)− s̄ measures whether the heterogeneity index
predicts actual treatment-effect heterogeneity.
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effects of demonstration plots or entry-points selection strategies depend on this predicted

heterogeneity index.

Table 8 shows the regression results. Columns 1 and 2 interact the treatment variables

directly with ŝ0(zi), while columns 3 and 4 use an indicator for observations with above-

median values of this heterogeneity index. The estimates are noisy, but the heterogeneity

index is positively associated with learning and having conversations, indicating that infor-

mation is more likely to flow to farmers with higher returns when entry points are selected

randomly and there are no demonstrations. For instance, farmers with an above-median

heterogeneity index are 10.1 percentage points more likely to learn about BD56 in random

and no demo villages (column 3). From column 4, these same farmers are expected to have

.26 more conversations (about 31 percent). However, the point estimates on the interaction

terms between the heterogeneity index and the treatment indicators are generally negative

and the coefficients on the five treatment indicators are positive and of similar magnitudes.

These findings indicate that while our treatments increased knowledge by either exploiting

existing network structure or triggering conversations, the gains in knowledge were concen-

trated amongst farmers that would be less likely to capitalize on the main benefit of BD56

if adopting.

As examples in column 4, demonstration plots increased conversations about BD56 for

farmers with below-median predicted effects on cropping intensity by around 0.29, but had

no effects for farmers who appeared more likely to increase cropping intensity if adopting

BD56 (0.29 + -0.32). Similarly, seeding with SAO-selected farmers and with the largest

farmers increases conversations for farmers with below-median values of the heterogeneity

index, but had no effect for farmers that are above the median.

This finding sheds light on who is induced to have conversations and learn when a poli-

cymaker intervenes with either an alternative seeding strategy or demonstration plots. Put

simply, the people impacted by these treatments do not appear to be those that would be

the most likely to enjoy the technology’s main benefit if it was randomly introduced to them.

One reasonable interpretation is that conversations take place and information is obtained

endogenously. Therefore, farmers with the highest returns from obtaining information are

more likely to engage in social learning regardless of the dissemination strategy. Intervening

to trigger the spread of information only affects those with lower returns, i.e. those who are

less likely to endogenously seek information regardless of the dissemination strategy.
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4 A model that rationalizes the experimental results

This section presents a basic diffusion model that allows for endogenous interaction between

unlinked agents and can rationalize our experimental findings. Our goal is not to capture

all of the strategic elements of network formation.28 Instead, we opt for the simplest for-

mulation that captures the tradeoffs introduced by our treatments. First, the policymaker

can introduce information to central entry points therefore taking advantage of the existing

network structure. Or, the policymaker can seek to induce more communication in a world

where communication networks are endogenous. We show how the two approaches act as

substitutes in a way that is consistent with our empirical findings.

4.1 Model Environment

We consider a village with N farmers indexed by i ∈ {1, 2, ..., N}. The village social network

is described by the N ×N adjacency matrix G, where gij = 1 indicates that farmers i and j

have an information-sharing link. In terms of our data, this feature of the model corresponds

to the baseline social network module.

The policymaker first seeds technology with five entry points, indexed by j = 1, ...5.

Each entry point is now “informed” and can then spread the information to others, as in

the standard information cascade. We assume, for now, that the network is fixed and a

farmer can only become informed if they receive information that emanated from an entry

point. The parameter q represents the exogenous probability that any informed farmer passes

information to a connected peer. The probability that a farmer becomes informed, denoted

as hi, is a function of the information-passing probability q and the length of the possible

paths between i and each entry point j. Intuitively, farmers having the greatest number of

shortest paths to entry points become the most likely to be informed. In contrast, a farmer

that is completely isolated from entry points is not informed.

We build on this standard framework by adding the ability to form new links. In addition

to passively waiting for information to arrive from entry points, a farmer can increase the

probability of becoming informed by forming a link with an entry point. Suppose the cost

of forming a new link is c and the probability that an entry point will pass information is p.

A new link between farmer i and entry point j is denoted as lij = 1 if i chooses to form the

link and 0 otherwise. Overall, the probability of gaining information from one of the two

28There are several papers looking at different aspects of how information links are formed. These range
from differences between actively sharing information and passively listening (Calvó-Armengol, Mart́ı, and
Prat, 2015), the types of initial network structures that allow for efficient information aggregation as societies
grow large (Acemoglu, Bimpikis, and Ozdaglar, 2014), and the stigma from seeking information when it might
signal low ability or understanding (Chandrasekhar, Golub, and Yang, 2016; Banerjee et al., 2018a).
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channels, denoted as µi, is

µi = 1− (1− hi) ∗
∏
j

(1− p)lij . (4)

Finally, we write v as the utility of being informed and normalize the utility of not being

informed to 0.

4.2 The link-formation decision

The simple problem of the farmer is to choose whether to link with each of the entry points.

More formally, the farmer’s optimization problem is written as

max
lij

v

(
1− (1− hi) ∗

∏
j

(1− p)lij
)
−
∑
j

c ∗ lij. (5)

The problem can be simplified to choosing the number of new contacts with entry points,

denoted as m, since each entry point adds the same probability of learning p. The exact

decision rule is that the farmer will link with m entry points if and only if:

v(1− hi)p(1− p)m−1 > c. (6)

The farmer seeks to connect directly to entry points for information if the costs of doing so

are low (c is low), or if he is in a poor position to obtain information via diffusion in the

network (hi is low). Increasing the probability that an entry point shares useful information

(p) increases the likelihood of connecting with one entry point (m = 1). If p is sufficiently

large, then increasing p causes the marginal benefit of linking with further entry points to

decrease because the farmer is likely to obtain the information from the first entry point

newly added to her network.

4.3 Consistency between the model and experimental findings

This small modification to a standard diffusion framework predicts treatment effects that

are in line with our RCT results. Put differently, the two mechanisms for being informed —

receiving information via the existing social network or communicating with an entry point

outside the network — can explain the main impacts as well as the heterogeneity across the

sample. The discussion that follows links this simple theory to our results.

Effectiveness of entering with Large/SAO farmers: By being more central in

networks, large and SAO-selected farmers facilitate diffusion. Holding networks fixed, the
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probability hi in equation (6) increases, causing the probability of receiving information to

increase. This prediction is the obvious one that supports network-based approaches to

identifying entry points when network structure remains fixed. The main effects of large

farmer and SAO-based selection on knowledge, and the sensitivity of these effects to condi-

tioning on centrality of entry points (Tables 2, 5, and 6) are all consistent with this standard

mechanism.

Effectiveness of demonstration plots: We argue that the demonstration plots convey

active experimentation and signal a farmer that is paying attention to how the new tech-

nology performs against its’ relative alternative. This is nontrivial as Hanna, Mullainathan,

and Schwartzstein (2014) show that inattention bias can hinder what farmers learn from

experimentation. As a result, fellow villagers perceive that farmer to be more likely to pass

useful information, i.e. the parameter p increases with the introduction of demonstration

plots. The marginal benefit of forming a link with a single entry point then increases. Cor-

respondingly, the new information link increases the likelihood of becoming informed. The

main results on knowledge and reported conversations in Table 2 appear consistent with this

reasoning.

Interactions between network-based selection and demonstration plots: The

endogenous network mechanism posits substitutability between seeding with more central

farmers and demonstration plots. Returning to equation (6), seeding with more central

farmers increases the probability of learning via existing network links and therefore reduces

the marginal benefit of endogenously seeking information from entry points. The findings

show this exactly: demonstration plots have no effect when cultivated by more central farmers

and the effect of entering with more central farmers is eliminated when the policymaker

introduces demonstration plots.

Network effects: Farmers directly connected to entry points gain less from demon-

stration plots because the existing network connection increases the likelihood of learning

through the information-diffusion mechanism. We found that baseline connections with en-

try points do increase knowledge, however, demonstration plots eliminate this advantage by

giving a channel for unconnected farmers to learn. This is compatible with equation (6)

where the benefit of making new links with entry points declines with hi.

In sum, our experimental findings, along with the simple model, emphasize the two

mechanisms that serve to boost learning in networks: optimizing the selection of entry

points or inducing communication to facilitate learning. The latter mechanism has received

less attention in the literature. However, our results suggest that it gives the policymaker

an important alternative for making information diffuse faster in networks.
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5 Concluding Remarks

We have shown experimental evidence on a new mechanism for spreading awareness about

technology. Demonstration plots — where partnering farmers cultivate a new technology

side by side with an existing one — increase awareness relative to a control where new tech-

nology is demonstrated on its own. We found that this relatively straightforward method

of agricultural extension made an additional seven percent of farmers aware about a new

seed variety. Demonstration plots raised awareness only for farmers that lacked social con-

nections with adopters. In addition, the demonstration plots were the most effective for

the farmers that were the most isolated — in terms of their eigenvector centralities — in

the baseline information network. All of these results, when taken together, are consistent

with a model where the effectiveness of demonstration plots is explained by their ability to

facilitate learning by triggering communication in information-sharing networks.

The experiment benchmarked these demonstration plots against scalable and policy-

relevant alternatives where entry points were selected strategically to increase their central-

ities in the social network. These were entering with the largest farmers and those hand

picked by government extension agents. Indeed, these methods do increase knowledge com-

pared to random selection. But the gains in awareness are about the same as the gains from

the demonstration plots. And in contrast to endogenous communication between people

without links, the selection treatments seem to be effective because of how they exploit the

structure of the baseline social network and because the more central entry points did a

better job of demonstrating a key benefit of new technology.

We also showed evidence on who becomes informed. The seed variety we introduced has

heterogeneous benefits. Specifically, only some farmers took advantage of the early matu-

ration by increasing cropping intensity. Applying machine-learning methods to identify the

characteristics associated with taking this action, we found farmers who are the most likely

to grow an additional crop when adopting BD56 are not those learning from demonstration

plots. We found the same result for improved seeding strategies. This finding highlights a

tradeoff: intervening to increase knowledge transmission may be ineffective for the highest

return individuals who learn even in the absence of additional intervention by the policy-

maker.

Overall, our analysis highlights the potential for alternate mechanisms of agricultural

extension, outside of those that rely on information cascades through social networks. De-

spite the ample evidence that networks are important for knowledge transmission, there have

been few studies that compare information cascades with alternative methods of spreading

27



knowledge.29 Focusing on policy, it is important to consider such alternatives because poli-

cymakers may face difficulty in identifying the entry points that are theoretically positioned

for the best spread of information. Either it could be prohibitively expensive to do a full

network survey, or there may not be observable characteristics (such as farm size) that cor-

relate strongly with less observable measures of network centrality. Our results show that in

these contexts, improving learning can be achieved by taking small steps to capture people’s

attention, and get them to communicate and engage in learning from new people.

29Outside of agricultural technology, Banerjee et al. (2018a) is the only paper we are aware of that compares
seeding information about rules for India’s 2016 demonetization with broadcasting that information more
widely.
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Tables

Table 1: Differences in baseline characteristics for different entry points

Coefficients and SE:

(1) (2) (3) (4)
Constant SAO Large farmers p-value (2)-(3)

Network Variables:

Degree 4.562∗∗∗ 3.582∗∗∗ 4.481∗∗∗ 0.473
(0.355) (1.042) (0.853)

Eigenvector 0.089∗∗∗ 0.042∗∗∗ 0.071∗∗∗ 0.030
centrality (0.006) (0.012) (0.011)

Diffusion centrality -0.010 0.643∗∗∗ 0.872∗∗∗ 0.157
(0.054) (0.141) (0.110)

Betweenness 164.186∗∗∗ 394.084∗∗∗ 315.640∗∗∗ 0.509
centrality (27.926) (103.540) (69.762)

Household Characteristics:

Area cultivated all 9.013∗∗∗ 5.865∗∗∗ 21.396∗∗∗ 0.000
seasons (bigah) (0.658) (1.368) (2.689)

Times named best 0.790∗∗∗ 4.477∗∗∗ 5.589∗∗∗ 0.275
farmer (0.206) (0.785) (0.707)

Log revenue per 10.061∗∗∗ -0.016 -0.014 0.970
bigah (0.057) (0.077) (0.075)

Number livestock 3.950∗∗∗ -0.008 1.968∗∗∗ 0.000
owned (0.217) (0.284) (0.512)

Number of overseas 0.138∗∗∗ -0.021 -0.026 0.881
migrants (0.031) (0.039) (0.037)

Education 4.647∗∗∗ 1.247∗∗∗ 0.925∗ 0.536
(0.304) (0.464) (0.488)

Age 42.222∗∗∗ 0.712 3.594∗∗∗ 0.007
(0.739) (1.026) (1.078)

Tubewell owner 0.097∗∗∗ 0.094∗∗∗ 0.181∗∗∗ 0.108
(0.022) (0.036) (0.051)

The data are limited to the 960 selected entry points in the 192 BD56 villages. Each row is the result from
a separate regression where the characteristic is regressed on a constant and indicators for SAO and large
farmer villages. The omitted group is the villages where demonstrators were selected randomly (meaning
the first column is the mean value for random entry points). The standard errors in each regression are
clustered at the village level. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗

levels.
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Table 2: Treatment effects on knowledge

(1) (2) (3)
Heard About Conversations Conversations w/

Entry Points
Random w/ demo 0.072∗ 0.116 0.106

(0.041) (0.086) (0.088)

SAO no demo 0.067∗ 0.046 0.042
(0.039) (0.067) (0.071)

SAO w/ demo 0.065 0.074 0.096
(0.040) (0.089) (0.086)

Large no demo 0.074∗∗ 0.123∗ 0.114∗

(0.036) (0.068) (0.066)

Large w/ demo 0.049 0.108 0.113
(0.044) (0.075) (0.079)

Strata fixed effects Yes Yes Yes
Mean in Control 0.60 0.84 0.72
Number of Observations 1919 1920 1920
R squared 0.171 0.212 0.250

The data are for the 10 random farmers per village that were selected for the information survey. The
dependent variable in column 1 is an indicator for having knowledge of BD56. The dependent variable in
column 2 is the number of conversations the farmer had with 15 other farmers about BD56 (the five entry
points and 10 randomly selected farmers). The dependent variable in column 3 is the number of
conversations specifically with entry points. Standard errors are clustered at the village level. Asterisks
indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels. Note, the rates of awareness are
similar amongst the different selection arms in demonstration plot villages, i.e. the estimates on SAO w/
demo, Large w/demo, and Random w/demo are indistinguishable.
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Table 3: Peer effects on knowledge, separate for villages with and without demonstration
plots

(1) (2) (3) (4)
Peer connections w/ 0.077∗∗ 0.135∗∗∗

entry points (0.034) (0.046)

Peer connections w/ -0.116∗

entry points * Demonstration Village (0.061)

Connected to at 0.092∗ 0.156∗∗∗

least 1 entry point (0.053) (0.059)

Connected to at -0.130
least 1 entry point * Demonstration Village (0.097)

Number of -0.004 -0.005 -0.002 0.002
connections (0.003) (0.006) (0.003) (0.005)

Number of 0.000 -0.005
connections * Demonstration Village (0.006) (0.005)

Demonstration 0.113∗∗ 0.132∗∗∗

Village (0.045) (0.045)

Strata fixed effects Yes Yes Yes Yes
Mean in Control 0.60 0.60 0.60 0.60
Number of Observations 635 635 635 635
R squared 0.186 0.199 0.185 0.197

The dependent variable in all regressions is an indicator for having heard of BD56 amongst the 10
randomly surveyed farmers per village. The data are limited to the 64 villages where entry points where
chosen randomly and peer effects can therefore be causally identified. The variable Peer connections w/
entry points is the number of entry points (from 0 to 5) that the farmer is connected with while Connected
to at least 1 entry point is an indicator variable for being connected to at least one of the entry points.
Standard errors are clustered at the village level. Asterisks indicate statistical significance at the 1% ∗∗∗,
5% ∗∗, and 10% ∗ levels.
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Table 4: Effects of demonstration plots as a function of baseline network centrality

(1) (2)
Demonstration 0.072∗ 0.179∗∗∗

Village (0.041) (0.057)

Eigenvector -1.067∗∗∗

Centrality * Demo (0.381)

Eigenvector 0.935∗∗∗

Centrality (0.325)

Strata fixed effects Yes Yes
Mean in Control 0.60 0.61
Number of Observations 639 517
R squared 0.183 0.202

The dependent variable in both regressions is an indicator for having heard of BD56. The data are limited
to the 64 villages where entry points were chosen randomly. Eigenvector Centrality is the baseline network
centrality of the respondent. Standard errors are clustered at the village level. Asterisks indicate statistical
significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 5: Effects of entry-point treatments when conditioning on observable attributes of
entry points

(1) (2) (3) (4)
SAO no demo 0.068∗ 0.047 0.056 0.033

(0.038) (0.039) (0.039) (0.040)

Large no demo 0.076∗∗ 0.043 0.064∗ 0.028
(0.035) (0.035) (0.035) (0.036)

Average degree of 0.006∗∗∗ 0.006∗∗∗

entry points (0.002) (0.002)

Number entry points 0.020∗ 0.022∗

growing rabi crop (0.011) (0.011)

Strata fixed effects Yes Yes Yes Yes
Mean in Control 0.60 0.60 0.60 0.60
Number of Observations 960 960 960 960
R squared 0.173 0.179 0.176 0.182

The data are for the 10 random farmers per village that were selected for the information survey and are
limited to the 96 villages without demonstration plots. The dependent variable in all regressions is an
indicator for being aware of BD56. Standard errors are clustered at the village level. Asterisks indicate
statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 6: Effects of having at least one large-farmer entry point on BD56 knowledge

Non-Demo Villages Demo Villages

(1) (2) (3) (4) (5) (6)
At least 1 large 0.079∗∗ 0.048 0.035 -0.017 -0.024 -0.025
entry point (0.032) (0.034) (0.035) (0.037) (0.040) (0.038)

Average degree of 0.005∗∗ 0.006∗∗∗ 0.003 0.003
entry points (0.002) (0.002) (0.003) (0.003)

Number entry points 0.022∗ 0.020
growing rabi crop (0.012) (0.013)

Strata fixed effects Yes Yes Yes Yes Yes Yes
Mean in Control 0.62 0.62 0.62 0.68 0.68 0.68
Number of Observations 960 960 960 959 959 959
R squared 0.175 0.179 0.182 0.175 0.176 0.180

The data are for the 10 random farmers per village that were selected for the information survey. The
dependent variable is an indicator for being aware of BD56. Column 1-3 are for the villages without
demonstration plots and columns 4-6 are for the demonstration villages. At least 1 large entry point is an
indicator for villages where one of the five largest farmers was selected as an entry point. The mean in the
control group is defined as the mean awareness rate in villages where none of the entry points were large
farmers. Standard errors are clustered at the village level. Asterisks indicate statistical significance at the
1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 7: Treatment effects on seed purchasing behavior

Number of farmers Share of village

(1) (2) (3) (4)
Random w/ demo 0.673 0.613 0.00622 0.00493

(0.813) (0.807) (0.00916) (0.00917)

SAO no demo 0.697 0.392 0.0116 0.00809
(0.694) (0.690) (0.0107) (0.0104)

SAO w/ demo 0.116 -0.154 0.00411 0.00135
(0.615) (0.640) (0.00744) (0.00774)

Large no demo 0.272 -0.171 0.00817 0.00325
(0.535) (0.621) (0.00782) (0.00868)

Large w/ demo 0.866 0.515 0.0195∗∗ 0.0147
(0.641) (0.654) (0.00946) (0.00914)

Average degree of 0.0642∗ 0.000567
entry points (0.0382) (0.000507)

Number entry points 0.166 0.00291
growing rabi crop (0.156) (0.00214)

Strata fixed effects Yes Yes Yes Yes
Mean in Control 1.679 1.679 0.019 0.019
Number of Observations 168 168 168 168
R squared 0.085 0.106 0.091 0.106

The data are from seed sales that were carried out for each village prior to the 2017 rainy season. We are
missing data for 24 of the 192 villages because the seed supply ran out before those villages could be
completed. The dependent variables are the number of farmers purchasing BD56 seeds (columns 1-2) and
the share of farmers purchasing (columns 3-4). Robust standard errors are in parentheses. Asterisks
indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 8: Heterogeneous effects on knowledge and conversations by predicted impact of BD56
on number of crops grown

Linear Heterogeneity Effect Above Median

(1) (2) (3) (4)
Heard About Conversation Heard About Conversations

Random w/ demo 0.082 0.247∗ 0.121∗∗ 0.294∗∗

(0.069) (0.131) (0.060) (0.128)

SAO no demo 0.073 0.096 0.089 0.125
(0.072) (0.115) (0.060) (0.094)

SAO w/ demo 0.096 0.184∗ 0.111∗ 0.253∗∗

(0.064) (0.110) (0.057) (0.099)

Large no demo 0.148∗∗ 0.247∗∗ 0.148∗∗∗ 0.284∗∗∗

(0.061) (0.101) (0.053) (0.101)

Large w/ demo 0.094 0.190 0.123∗ 0.265∗∗∗

(0.083) (0.116) (0.068) (0.096)

Heterogeneity 0.034 0.236 0.101∗ 0.261∗∗

(0.123) (0.195) (0.057) (0.103)

SAO no demo * 0.001 -0.145 -0.014 -0.111
Heterogeneity (0.164) (0.282) (0.072) (0.115)

SAO w/ demo * -0.096 -0.369 -0.072 -0.337∗∗

Heterogeneity (0.143) (0.227) (0.077) (0.148)

Large no demo * -0.230 -0.386∗ -0.123∗ -0.276∗∗

Heterogeneity (0.152) (0.227) (0.072) (0.135)

Large w/ demo * -0.136 -0.252 -0.124 -0.274∗∗

Heterogeneity (0.192) (0.240) (0.081) (0.119)

Random w/ demo * -0.020 -0.430∗ -0.078 -0.318∗∗

Heterogeneity (0.161) (0.241) (0.077) (0.141)

Strata fixed effects Yes Yes Yes Yes
Mean in Benchmark 0.60 0.85 0.60 0.85
Number of Observations 1910 1911 1910 1911
R squared 0.174 0.216 0.175 0.219

These regressions test whether the different treatments increase knowledge and spark conversations more
(or less) for farmers that are predicted to have the largest impact of of BD56 on the number of crops
grown. Columns 1 and 2 show linear heterogeneity where the treatment indicators are interacted with
ŝ0(zi) = E(yi|Di = 1, zi)−E(yi|Di = 0, zi) and columns 3 and 4 partition the sample into farmers that are
above and below the median in the distribution of ŝ0(zi). For each farmer we calculate ŝ0(zi) as the
median value across the 100 sample divisions in Figures 6 and 7. The dependent variable in columns 1 and
3 is an indicator for having knowledge of BD56. The dependent variable in columns 2 and 4 is the number
of conversations the farmer had with 15 other farmers about BD56. Standard errors are clustered at the
village level. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Figures

Figure 1: Experimental Design

Sample Villages (N=256)

Treatment
Villages (N=192)

Largest Farmers (N=64)

Demo (N=32)
No Demo (N=32)

SAO Farmers (N=64)

Demo (N=32)
No Demo (N=32)

Random Farmers (N=64)

Demo (N=32)
No Demo (N=32)

Control
Villages (N=64)

Notes: Figure shows a schematic representation of the experimental design. The 192 BD56 treatment
villages were divided into three groups for entry-point selection: random selection, relying on the five
largest farmers, and selecting those indicated by the ag. extension officer (SAO). Demonstration plots were
set up on half of the 64 villages within each of these arms.
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Figure 2: A visualization of the demonstration plot in comparison to the control group

A: Demonstration Plot B: Control Plot

Notes: Panel A on the left shows an example demonstration plot. The plot on the left side is the BD56 plot
while the plot on the right is the popular longer duration variety Swarna. Panel B on the right shows an
example from the comparison villages where farmers were only given one marker to denote the BD56 plot.
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Figure 3: A timeline of the experiment and data collection

2016 Seed	distribution
Baseline

Boro	season Aman	season 	(Rabi	season)
Jun

2017 Seed	sale

Boro	season Aman	season
JunJan Feb Mar Apr May Jul Aug

Census

EndlineMidline	2
Information	diffusion	survey

Midline	1

Jul Aug Sep Oct Nov DecMar Apr May

42



Figure 4: Distribution of centrality measures from social network survey
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Notes: Figure shows the histograms for the 3 centrality measures from the baseline social network survey
with all households (N=21,926).
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Figure 6: ATE and heterogeneous effect on number of crops grown
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Notes: The figure shows the average treatment effects and the heterogeneous effect on the number of crops
grown across across 100 equal-sized splits into training and validation datasets datasets. For each split, we
estimate separate LASSO regressions for treatment (BD56) and control (BD51) farmers in the training
dataset. In each case the number of crops grown is regressed on a set of 24 covariates, zi. Using the selected
covariates for each group, we calculate the estimated heterogeneity index for each farmer in the validation
dataset as ŝ0(zi) = E(yi|Di = 1, zi)− E(yi|Di = 0, zi). Using the validation dataset, we then regress the
observed number of crops on the treatment, ŝ0(zi)− s̄0, the interaction between treatment and ŝ0(zi)− s̄0,
and upazila fixed effects. The top bar in the figure shows the distribution of the 100 estimates of the ATE
(the coefficients on the treatment indicator). The bottom bar shows the 100 estimates of the heterogeneity
effect (the coefficient on the interaction between treatment and ŝ0(zi)− s̄0). The vertical line represents
the average across the 100 splits, the box the interquartile range, and the whiskers give the min and max.
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Figure 7: Effects on number of crops grown by quartiles of the predicted effect
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Notes: The figure shows the estimated treatment effects by quartile of the heterogeneity index for 100
equal-sized splits into training and validation datasets. For each split, we estimate separate LASSO
regressions for treatment (BD56) and control (BD51) farmers in the training dataset. In each case the
number of crops grown is regressed on a set of 24 covariates, zi. Using the selected covariates for each
group, we calculate the estimated heterogeneity index for each farmer in the validation dataset as
ŝ0(zi) = E(yi|Di = 1, zi)− E(yi|Di = 0, zi). Using the validation dataset, we then regress the observed
number of crops on the treatment and upazila fixed effects separately for the four quartiles of ŝ0(zi). The
heavy dots show the averages across the 100 sample divisions while the bands display the range from the
5th to 95th percentiles.
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Appendix: For Online Publication

Figure A1: Location of study area

Notes: The figure shows the location of the 11 study Upazilas within Rajshahi district of Bangladesh. The
shading corresponds to elevation, measured in meters.
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Figure A2: Cumulative distributions of network statistics for different types of entry points
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Notes: Each graph shows the cumulative distribution function of the relevant network statistics, separately
for the three different types of entry points. The network centrality measures are calculated for each entry
point using the baseline social network survey.
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Figure A3: Annual land allocation for plots grown with either BD56 or BD51
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Notes: The data are for the plots where either BD56 or BD51 was planted by the entry points. The
vertical axis gives the share of plots that were allocated to the crop on the date corresponding to the
horizontal axis. The sold lines are for the treatment (BD56) farmers and the dashed lines are for the
control (BD51) farmers.
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Table A1: Balance of household characteristics across treatment arms

Treatment Arm:

Control Large SAO Random Large + SAO + Random + Joint
Demo Demo Demo p-value

Education 4.235 3.951 4.663 4.604 4.216 4.368 4.768 0.381
(4.314) (4.202) (4.521) (4.293) (4.125) (4.466) (4.235)

Age 41.356 41.908 41.660 41.650 41.820 40.938 41.261 0.829
(12.407) (11.926) (12.348) (12.300) (12.143) (12.023) (12.039)

Owns Shallow 0.103 0.149 0.160 0.085 0.072 0.086 0.115 0.356
Tubewell (0.304) (0.356) (0.367) (0.278) (0.259) (0.280) (0.319)

Aman Rice Area 4.071 4.293 5.029 4.221 4.678 4.775 4.265 0.770
(Bigah) (5.656) (5.550) (12.429) (6.027) (5.530) (5.983) (5.152)

Aman Other Crop Area 0.348 0.375 0.319 0.462 0.300 0.236 0.395 0.682
(Bigah) (1.567) (1.893) (1.478) (9.638) (1.676) (0.794) (1.412)

Boro Rice Area 3.328 3.002 3.812 3.344 2.515 3.289 2.889 0.383
(Bigah) (4.264) (4.296) (5.847) (5.312) (4.171) (4.699) (4.060)

Boro Other Crop Area 1.125 1.252 1.332 1.140 1.478 1.100 1.346 0.840
(Bigah) (2.454) (2.513) (3.325) (2.362) (3.043) (2.219) (2.358)

Aman Urea Fertilizer 21.427 21.953 21.260 22.161 20.644 21.313 20.588 0.843
(KG per Bigah) (15.109) (15.459) (21.673) (21.759) (17.417) (25.641) (14.648)

Aman DAP Fertilizer 15.834 16.110 15.519 16.435 14.889 15.813 15.157 0.326
(KG per Bigah) (11.660) (15.169) (20.073) (13.662) (6.739) (15.346) (10.332)

Aman Rice Yield (KG 17.756 17.499 18.063 17.989 17.477 17.570 17.837 0.927
per Bigah) (3.814) (4.180) (3.263) (3.089) (3.280) (3.851) (3.483)

Grows Short-Duration 0.011 0.035 0.007 0.004 0.007 0.018 0.008 0.831
Rice (0.102) (0.185) (0.085) (0.066) (0.081) (0.135) (0.088)

Grows Wheat 0.236 0.260 0.243 0.190 0.372∗∗ 0.231 0.286 0.353
(0.425) (0.439) (0.429) (0.393) (0.483) (0.422) (0.452)

Grows Mango 0.086 0.063 0.071 0.093 0.076 0.076 0.063 0.958
(0.280) (0.242) (0.256) (0.290) (0.265) (0.266) (0.244)

Grows Potato 0.083 0.052 0.086 0.082 0.074 0.061 0.077 0.872
(0.275) (0.222) (0.281) (0.274) (0.261) (0.239) (0.266)

Grows Pulses 0.047 0.103 0.095 0.076 0.077 0.075 0.048 0.518
(0.212) (0.305) (0.293) (0.265) (0.266) (0.264) (0.215)

Grows Onion 0.049 0.037 0.050 0.021∗ 0.047 0.039 0.057 0.275
(0.215) (0.188) (0.219) (0.144) (0.211) (0.194) (0.232)

Grows Garlic 0.017 0.009 0.014 0.013 0.009 0.017 0.006 0.429
(0.128) (0.096) (0.118) (0.113) (0.095) (0.130) (0.078)

The summary statistics are calculated using the door-to-door census with 21,926 households. Each column
shows mean values of each variable for either the control group or one of the six treatment groups.
Standard deviations are reported in parentheses below each mean value. Asterisks indicate a statistically
significant difference (1% ∗∗∗, 5% ∗∗, and 10% ∗ ) between that arm and the control arm, where p-values
are calculated by regressing each variable on a constant and indicators for each of the six treatment groups
(standard errors adjusted for clustering at the village level). The final column shows the joint p-value of
each of these regressions. Aman refers to the wet season prior to the door-to-door baseline (2015) and Boro
refers similarly to the most recent dry season (2015-2016). 1 Bigah = 0.33 Acres.
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Table A2: Balance of household characteristics for entry points

Control (BD51) BD56 Treatment p-value
Education 5.361 5.392 0.832

(4.620) (4.643)

Age 43.326 43.690 0.577
(12.585) (12.225)

Owns Shallow 0.178 0.191 0.528
Tubewell (0.383) (0.393)

Aman Rice Area 8.553 8.977 0.523
(Bigah) (11.097) (10.494)

Aman Other Crop Area 0.514 0.616 0.415
(Bigah) (1.648) (2.037)

Boro Rice Area 6.483 6.247 0.795
(Bigah) (7.781) (8.606)

Boro Other Crop Area 2.063 2.299 0.454
(Bigah) (3.709) (3.951)

Aman Urea Fertilizer 21.879 21.316 0.541
(KG per Bigah) (24.672) (15.565)

Aman DAP Fertilizer 16.363 15.978 0.735
(KG per Bigah) (17.281) (18.909)

Aman Rice Yield (KG 17.888 17.566 0.207
per Bigah) (3.797) (3.881)

Grows only rice 0.389 0.337 0.132
(0.488) (0.473)

Grows Short-Duration 0.017 0.024 0.488
Rice (0.129) (0.153)

Grows Wheat 0.304 0.312 0.946
(0.460) (0.464)

Grows Mango 0.126 0.117 0.792
(0.332) (0.322)

Grows Potato 0.121 0.098 0.359
(0.327) (0.297)

Grows Pulses 0.078 0.111 0.127
(0.268) (0.314)

Grows Onion 0.048 0.068 0.323
(0.215) (0.252)

Grows Garlic 0.013 0.028 0.065
(0.115) (0.166)

The analysis uses the door-to-door census conducted at the beginning of the experiment. Data are limited
to the 1,747 entry points that consented to participate. Each column shows mean values and standard
deviations are reported in parentheses below. The final column shows the p-value for the comparison of
means, based on a regression of each characteristic on the treatment indicator and Upazila (strata) fixed
effects. Standard errors are clustered at the village level.
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Table A3: Differences between SAO selected and random farmers, adjusting for farm size

Degree Eigenvector Betweenness

(1) (2) (3) (4) (5) (6)
SAO-based selection 3.582∗∗∗ 1.917∗∗ 0.042∗∗∗ 0.025∗∗ 394.084∗∗∗ 281.922∗∗∗

(1.044) (0.838) (0.012) (0.011) (103.649) (89.698)

Farm Size 0.284∗∗∗ 0.003∗∗∗ 19.124∗∗∗

(0.053) (0.000) (4.634)
Mean in random group 4.56 4.56 0.09 0.09 164.19 164.19
Number of Observations 639 639 511 511 639 639
R squared 0.037 0.221 0.036 0.175 0.033 0.094

The data are limited to the 640 selected entry points in the random and SAO villages. The dependent
variables are degree centrality (columns 1-2), eigenvector centrality (columns 3-4), and betweenness
centrality (columns 5-6). Farm size is the total sum of cultivated area (across all three agricultural
seasons). The omitted group in each regression is the villages where demonstrators were selected randomly.
The standard errors are clustered at the village level. Asterisks indicate statistical significance at the 1%
∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A4: Analysis of take up by entry points

(1) (2) (3)
Treatment village -0.025

(0.035)

Demo Village 0.060
(0.039)

Random + Demo 0.085
(0.062)

SAO 0.076
(0.066)

SAO + Demo 0.067
(0.067)

Large 0.053
(0.067)

Large + Demo 0.157∗∗

(0.068)

Strata (Upazila) Fixed Effects Yes Yes Yes
Mean in omitted group 0.71 0.65 0.69
Number of Observations 1795 953 953
R squared 0.046 0.059 0.064

The data are from the first midline with 1,795 entry points. Column 1 uses all observations and columns 2
and 3 use only observations from treatment (BD56) villages. Standard errors are clustered at the village
level. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

53



Table A5: Cultivation practices by treatment

(1) (2) (3) (4)
Harvest Date 2nd Crop Boro Crop N Crops

Treated Village -25.350∗∗∗ 0.278∗∗∗ -0.035 0.243∗∗∗

(1.384) (0.035) (0.039) (0.046)

Strata fixed effects Yes Yes Yes Yes
Mean in Control 8.64 0.24 0.82 2.06
Number of Observations 1242 1242 1242 1242
R squared 0.381 0.284 0.257 0.278

The data are limited to the plots where either BD56 or BD51 was planted by the entry points. The
dependent variable in column 1 is the date of the harvest, measured in days after November 10, 2016. The
dependent variables in columns 2 and 3 are indicators for whether the plot was sown with the Rabi
(in-between) crop and the Boro (dry-season) crop. The dependent variable in column 4 is the total number
of crops grown across all seasons. Standard errors are clustered at the village level. Asterisks indicate
statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A6: Cultivation practices by treatment and type of entry point

(1) (2) (3) (4)
Harvest Date 2nd Crop Boro Crop N Crops

Treated Village -25.315∗∗∗ 0.175∗∗∗ -0.073 0.102
(1.603) (0.048) (0.051) (0.072)

Treatment Village * -0.219 0.110∗ 0.100∗ 0.210∗∗∗

SAO (2.518) (0.061) (0.056) (0.079)

Treatment Village * 0.533 0.173∗∗∗ 0.002 0.174∗∗

Large (2.302) (0.065) (0.062) (0.085)

SAO 1.535∗ -0.040 -0.047 -0.087∗∗

(0.796) (0.033) (0.029) (0.035)

Large 0.784 -0.051 -0.014 -0.065∗

(0.801) (0.031) (0.029) (0.034)
Mean in Control 8.64 0.24 0.82 2.06
Number of Observations 1242 1242 1242 1242
R squared 0.382 0.291 0.262 0.286

The data are limited to the plots where either BD56 or BD51 was planted by the entry points. The
dependent variable in column 1 is the date of the harvest, measured in days after November 10, 2016. The
dependent variables in columns 2 and 3 are indicators for whether the plot was sown with the Rabi
(in-between) crop and the Boro (dry-season) crop. The dependent variable in column 4 is the total number
of crops grown across all season. Standard errors are clustered at the village level. Asterisks indicate
statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A7: Profitability of BD56 and BD51 plots

(1) (2) (3) (4)
Aman Rabi Boro Total

Treated Village -4576.411∗∗∗ 1518.881∗∗∗ -882.748 -4161.562∗∗∗

(248.751) (451.867) (619.309) (767.897)

Strata fixed effects Yes Yes Yes Yes
Mean in Control 10309.28 2508.40 11900.65 24954.19
Number of Observations 1200 1205 1228 1156
R squared 0.396 0.438 0.314 0.380

The data are limited to the plots where either BD56 or BD51 was planted by the entry points. The
dependent variables are profits per bigah, measured in Bangladeshi Taka (BDT). Approximately 80
BDT=1USD and 3 bigah = 1 acre. Standard errors are clustered at the village level. Asterisks indicate
statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A8: Peer effects on the number of conversations with entry points, separate for villages
with and without demonstration plots

(1) (2) (3) (4)
Peer connections w/ 0.050 0.179∗

entry points (0.064) (0.105)

Peer connections w/ -0.261∗

entry points * Demonstration Village (0.137)

Connected to at 0.093 0.284∗

least 1 entry point (0.098) (0.147)

Connected to at -0.383∗

least 1 entry point * Demonstration Village (0.215)

Number of 0.001 -0.001 0.001 0.005
connections (0.005) (0.011) (0.004) (0.009)

Number of 0.003 -0.005
connections * Demonstration Village (0.011) (0.009)

Demonstration 0.176∗∗ 0.220∗∗

Village (0.087) (0.087)

Strata fixed effects Yes Yes Yes Yes
Mean of Dep Variable 0.78 0.78 0.78 0.78
Number of Observations 636 636 636 636
R squared 0.301 0.310 0.301 0.312

The dependent variable in all regressions is the number of entry points that the respondent spoke to about
BD56. The data are limited to the 64 villages where entry points where chosen randomly and peer effects
can therefore be causally identified. The variable Peer connections w/ entry points is the number of entry
points (from 0 to 5) that the farmer is connected with while Connected to at least 1 entry point is an
indicator variable for being connected to at least one of the entry points. Standard errors are clustered at
the village level. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A9: Effects of hitting a large-farmer entry point

(1) (2)
All Villages Random Villages

At least 1 large 0.079∗∗ 0.123∗

entry point (0.032) (0.071)

At least 1 large -0.101∗∗ -0.131
entry point * Demonstration Village (0.048) (0.104)

Demonstration 0.078∗∗ 0.119∗∗

Village (0.038) (0.047)

Strata fixed effects Yes Yes
Mean of Dep Variable 0.67 0.64
Number of Observations 1919 639
R squared 0.171 0.189

The data are for the 10 random farmers per village that were selected for the information survey. Column
1 is for all 192 BD56 villages, column 2 is for the 64 villages where entry points were selected randomly. At
least 1 large entry point is an indicator for villages where one of the five largest farmers was selected as an
entry point. Standard errors are clustered at the village level. Asterisks indicate statistical significance at
the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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