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Abstract

Constructing optimal rank-order lists in centralized matching systems often entails

sophisticated risk-taking consideration. We empirically study an admission system

that employs a constrained Deferred Acceptance Algorithm to understand how stu-

dents construct their lists. Students appear overly cautious with their top choices and

most of them do not always put safer choices at a lower-ranked spot on the list. We

propose that the Model of Directed Cognition could explain such choices. Applicants

using the model myopically focus on the spot they are contemplating and neglect its

impact on the rest of the list. To differentiate from alternative hypotheses, we deploy

an in-field experiment that pinpoints a core prediction of our model concerning framing

effects and find clear evidence of it. Structural estimation suggests that 45%∼55% of

the sample are better described by our model and that this boundedly rational decision

rule explains 83% of outcome inequality across socioeconomic groups.
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1 Introduction

Centralized admission systems play an important role in student-to-school matching around

the world. In these systems, students are assigned to schools based on the outcome of a

matching mechanism that accounts for students’ reported preferences (typically called rank-

order lists, or ROLs) and their priority scores. In most real-world mechanisms, determining

the optimal ROL requires significant sophistication on the part of the student. It consists

of multiple risk-reward tradeoff problems that require backward induction, contingent rea-

soning, and aggregating risk across choices, which applicants may have trouble grasping.1

Failure to grasp the optimal strategy results in undesirable outcomes at later stages of edu-

cation, which could ultimately influence career choice and economic mobility.2

We empirically investigate the consequences of sub-optimal application choices among

college applicants in Ningxia, China. The centralized admission system in Ningxia employs

a constrained Deferred Acceptance Algorithm3 where eligible students can list up to four

colleges from 239 first-tier colleges. The algorithm works by considering students’ demand

in order of their scores from the College Entrance Exam (CEE). When the algorithm reaches

a given student, it considers the student’s first-choice college and assigns the student to this

choice if the admission quota of the college has not been filled. The algorithm checks the next

choice only when the choice in question has already been filled by higher-scoring students,

and repeats this process until the fourth choice. In practice, the student is relegated to a

second-tier college outside of the 239 choices if all of the listed colleges have been filled.

Undoubtedly, any student needs to manage the risk of relegation to a second-tier college

by listing at least one safe first-tier college on her ROL. The amount of risk that the student

should take for the other three choices, however, is less obvious. Intuitively, the cost of not

getting into one’s first-choice college is less devastating than not getting into one’s fourth

choice - if the first choice is missed, the student can just move on to the next choice without

worrying about a looming relegation. The optimal choice for any spot depends on the

consequences of rejection, and the consequences of rejection depend on the schools listed

1Chade and Smith (2006) and Shorrer (2019) theoretically characterize and develop algorithms for con-
structing the optimal portfolio in stylized settings of college admission, both of which invoke dynamic pro-
gramming thinking that is similar to the logic of backward induction. Calsamiglia et al. (2020) show that
backward induction solves computationally intractable problems for a wide class of mechanisms that are
used in real college admission systems. Camerer et al. (1993) and Johnson et al. (2002) document failure
of backward induction in extensive form games. Esponda and Vespa (2016) and Mart́ınez-Marquina et al.
(2019) document how uncertainty impedes contingent reasoning. Rabin and Weizsäcker (2009) document
decision makers’ general tendency to evaluate risk in isolation.

2Impacts of postsecondary education on labor market income have been documented in many countries,
including Chile (Hastings et al., 2013), China (Jia and Li, 2016), and the US (Chetty et al., 2020).

3As detailed in Section 2.2, this is also a serial dictatorship mechanism.
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lower on the ROL. This intuition prescribes, that rather than viewing each spot in isolation,

the student should formulate a contingency plan to make the most of the entire portfolio by

backward induction.

We obtained access to the administrative data on students’ application lists. We find

that, even with their first choices, 25% of the students choose a safe college – i.e., one

whose probability of vacancy availability is larger than 84.3% when the system processes

their requests4, suggesting that many students are not very selective in their first choices.

Meanwhile, 61.5% of the students exhibit “competitiveness reversals”, defined as ranking a

less-selective college above a more-selective college on their ROLs, resembling evidence from

many other contexts (Lucas and Mbiti, 2012; Ajayi, 2013; He, 2015; Rees-Jones et al., 2020;

Larroucau et al., 2021).

These behaviors correlate with demographics and contribute to inequality in admission

outcomes. Students coming from disadvantaged areas are substantially more cautious in

their first choices and are more likely to exhibit competitiveness reversals on their ROL.

Conditional on priority scores, the most disadvantaged students on average end up in col-

leges whose selectivity, as measured by mean of cutoffs during 2014-2018, are 0.13 standard

deviation lower than the most advantaged students.

To explain these empirical patterns, we propose that a boundedly rational decision rule,

inspired by the Directed Cognition Model (henceforth the DC Model) (Gabaix et al., 2006),

can naturally fit these patterns. In our context, the DC Model predicts that students focus

their cognition entirely on the single spot they are contemplating (i.e., they choose a college

to maximize improvement of expected utility for a portfolio that consists of that spot and a

subjective, perhaps psychological, outside option) and ignore the impact of this choice on the

rest of the ROL. This decision rule reduces a portfolio choice problem to repeated discrete

choice problems, dispensing with backward induction, contingent reasoning, or the difficulty

of aggregating risk across choices.

Because most centralized mechanisms share the feature that optimal choices across dif-

ferent spots are interdependent, our hypothesis, if substantiated, could provide a descriptive

model of suboptimal strategic behavior, and have general implications for the design of

matching systems. However, testing decision optimality is difficult for this type of problem

because applicants may have heterogeneous preferences (Agarwal and Somaini, 2018, 2019).

This may be the reason that limited progress has been made on understanding whether

decision-makers respond to such interdependency in a systematically suboptimal way5. We

4This probability is sometimes refer to as the unconditional probability, i.e. the probability of being
admitted in the absence of the higher-ranked choices. It is also the probability of meeting the admission
cutoff of a college.

5Significant progress has been made in understanding mistakes in the absence of strategic concerns and
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are able to perform this task with the help of an incentivized survey experiment, conducted

among a subset of student applicants right after they have submitted ROLs. Additionally,

when analyzing ROLs in the administrative data, the variations in assignment probability

across individual students enable us to differentiate our hypothesis from various types of

preference heterogeneity. To understand how the DC Model can be differentiated from al-

ternative hypotheses with the help of the aforementioned data, we briefly discuss the four

main predictions of the DC Model as well as their empirical support.

Our first prediction, labeled “Top-Choice Cautiousness”, says that, compared to the

Rational Rule, the DC Model takes substantially less risk for their first choices. However,

their fourth choices are similar to their rational counterparts in terms of risk-taking.

Our second prediction, labeled “Competitiveness Reversals”, states that the DC

Model is often more likely to rank more competitive colleges at a lower position, at times

generating dominated choices where the applicant ranks a lower-quality college higher on

her list of choices.

While these two predictions seem to be in line with our previous observation from stu-

dents’ risk taking behavior in the administrative data, it is important to recognize that

horizontal preference – i.e., preferences that do not align with competitiveness – may also

contribute to the seemingly anomalous risk-taking behavior. To that end, the next two

predictions play a key role in distinguishing our model from the alternative hypotheses.

Our third prediction, labeled “Framing Effect”, indicates that the DC Type takes more

risks if the ROL problem is transformed to mathematically equivalent lottery formulation.

We analyze the incentivized questions from the online survey to test this prediction. Esti-

mates using our preferred specification suggest that 50.4% (SE=1.7%) of the students behave

according to the predictions of the DC Type in our survey sample. Moreover, echoing our

findings in the administrative data, a 1 SD increase in our socioeconomic status index is

associated with a 5.3% (SE=1.8%) decrease in propensity to be the DC Type.

Our fourth prediction, labeled “Upward Movement”, implies that, if the priority score

for a rational type was to increase, any listed colleges will move down along the list. For

DC decision-makers, however, any listed college would first move up along the list, and then

risk-taking consideration. Artemov et al. (2017) posit that, in a strategy-proof environment, the mistakes
on the lists are primarily inconsequential. Shorrer and Sóvágó (2018) find that, in Hungary, dominated
choices in college applications are more likely to be made when expected cost is lower; they argue that
multiple imperfections in decision-making may contribute to their findings. Hastings and Weinstein (2008)
document substantial presence of information frictions in school choices, using randomized interventions. In a
setting with strategic considerations, Rees-Jones et al. (2020) find that decision-makers neglect correlation in
admission chances, even in settings where correlation is of first-order concern. Kapor et al. (2020) document
mistaken beliefs using survey data in centralized system applications, using survey data. Dreyfuss et al.
(2019) proposes that Koszegi-Rabin expectation-based reference dependence may explain the dominated
choice in Li (2017)’s experimental data.
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move down, exhibiting an inverse-U shape as a function of the priority score. Data analysis

reveals substantial presence of the non-monotonic movements that are predicted by the DC

Model.

To quantify the impact of the DC Model, we structurally estimate a mixture model

of college choices, where both DC and Rational Type coexist, using simulated method of

moments. We are able to jointly identify preferences and the DC Type by exploiting how

risk-taking behaviors in different positions of the list jointly respond to variation in priority

scores, which causes a differential rate of change in assignment probabilities for different

colleges.

The mixture model fits the data better than the single-type model, even when extra

flexibility is corrected by BIC analogues, and it yields substantially better out-of-sample

predictions relative to the single-type rational model. A closer look at the fit of a Rational

Type-only model suggests that the flexibility of college preference in our model generates

less cautiousness and fewer competitiveness reversals, echoing our first two predictions.

The estimated share of the DC Type is substantial, and ranges from 45.1% (SE=0.54%)

to 55.1% (SE=0.55%). The estimates are comparable to the share of the DC Type esti-

mated from the survey experiment. Moreover, a 1 SD increase in the socioeconomic index

is associated with a decrease that ranges from 3.68% (SE=0.56%) to 6.02% (SE=0.55%) in

the share of the DC Type. In a counterfactual scenario where all students act optimally

with respect to the mechanism, conditional on priority scores, the outcome gap between the

most disadvantaged and advantaged quarter of the sample shrinks by 83.15%, suggesting

that behavioral bias is the primary factor that explains the less desirable outcomes among

high-achieving disadvantaged.

The DC decision rule also has adverse impact on overall efficiency. The de-biasing inter-

vention is predicted to induce substantial welfare gain among behavioral applicants, which

is on average larger than an increase of roughly 0.25 s.d. in the test scores under the old

equilibrium. On the other hand, switching to either an unlimited list or a Boston mechanism

without de-biasing, while intuitively making the bias less relevant, decreases welfare over-

all, echoing Chen and Kesten (2017)’s theoretical findings on the benefit of China’s parallel

mechanisms.

Our paper adds to the literature on behavioral mechanism design (Hassidim et al., 2016;

Li, 2017; Rees-Jones and Skowronek, 2018; Dreyfuss et al., 2019). Our results suggest that

decision-makers may fail to achieve optimality even if they recognize the gain of being strate-

gic, an important difficulty discussed by Pathak and Sönmez (2008). We show that, in the

presence of choice interdependence, a specific decision heuristic that neglects such a connec-

tion can better explain participants’ strategies. Our analysis demonstrates the benefits of
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structural modeling in the analysis of behavioral agents (DellaVigna, 2018).

The paper also is closely related to the recent surge of studies on empirical student-

school matching. Song et al. (2020), an important and closely related paper, shows that full

rationality with no aggregate uncertainty is incompatible with admission outcome data in

China. To tackle aggregate uncertainty, a key component of decision-making in centralized

systems, as well as to provide evidence on the specific suboptimal strategy employed in our

setting, our paper is similar to papers that employ both rank-order lists and survey data to

test for optimal strategic play (De Haan et al., 2015; Kapor et al., 2020). Our paper further

demonstrates that behavioral decision rules can be easily incorporated into the framework

of revealed preference analysis laid out in Agarwal and Somaini (2018, 2019), and can help

unmask the mechanisms behind the choice patterns of high-achieving disadvantaged students

(Hoxby and Avery, 2012). Our findings suggest that certain cognitive limitations create gaps

in admission outcomes among applicants of the same academic ability; thus, our work is

related to the literature on the distributional consequences of behavioral biases (Campbell,

2016; Bhargava et al., 2017; Allcott et al., 2019; Rees-Jones and Taubinsky, 2020). While

the underlying mechanism is different, this also echoes studies that cover the distributional

impact of school choices in decentralized systems (Walters, 2018).

The paper proceeds as follows. Section 2 introduces the empirical setting and data

sources. Section 3 lays out the problem mathematically and discusses both the Rational

Rule and the DC Decision Rule. Section 4 presents the evidence concerning Cautiousness

and Competitiveness Reversals. Section 5 tests Framing Effects using the survey experiment

data. Section 6 tests Upward Movement using the administrative data. Section 7 presents

results from the structural estimation. Section 8 concludes.

2 Empirical Setting

2.1 Summary of Timeline

Figure A1 presents the timeline of the admission procedure6. Student applicants are required

to take the College Entrance Exam (CEE), a nationwide exam that takes place less than

one month before the start of college admissions. As elaborated in Appendix E.2, the exam

performance determines students’ priority scores in the admission system and thus has a

predominant impact on students’ application strategies.

When students are notified of their test scores and corresponding provincial rankings, the

6The timeline in 2020 is different from the years before 2020 because of COVID-19. In 2020 the exam as
well as all the related admissions activities were postponed by exactly one month.
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online college application system opens. At that time, students know whether their score

meets the minimum requirement to apply for schools in the 1st-tier college category, which

is set by Ningxia Provincial Education Authorities. It has remained quite stable in terms of

rankings over time7.

The application process is time-constrained and cognitively demanding. Students need

to select four colleges from 239 colleges, but have few opportunity to learn about this system

by trial and error before submitting their final decisions, despite the novelty of this decision

environment. Anecdotal evidence suggests that misunderstanding is not rare. According

to several college application advisory platforms on the Chinese Internet, one of the most

common mistakes is to treat the four spots on the ROL as separate and equal, effectively

ignoring the order in which the ROL is processed8.

2.2 Admission Rule

After the deadline for ROL submission, the centralized admission system assigns students to

colleges using a deferred acceptance algorithm based on their priority score and the colleges’

preannounced admission quotas. Since the priority score for each student is the same for all

colleges, the mechanism is effectively a serial dictatorship mechanism, where colleges only

need to specify a priority score cutoff to decide which applicants are admitted, regardless of

a college’s position on the student’s submitted ROL. For a student applicant, she knows her

priority score and ranking when she applies, and past cutoff scores are publicly available.

The only uncertainty comes from the cutoffs of the current year.

Table B1 presents examples of how cutoffs determine admission outcomes. In Example

1, the student is admitted to college A because her score exceeds A’s cutoff. The system

ignores all her lower-ranked choices. In Example 2, the student is admitted to college B

because her score does not meet A’s cutoff but exceeds B’s cutoff. As a result, the system

assigns her to B, ignoring C and D. In Example 3, the student is unassigned because she

does not meet the cutoff of any college she listed. In Example 4, the student is assigned to

college D because she does not meet the cutoffs of A,B, and C but meets the cutoff of D.

After assignment of first-tier colleges has been completed, students are notified of the

admission decision within a month. Students who are not admitted to any first-tier colleges

will be passed on to the next stage of admission, where the centralized system will assign

them to lower-tier colleges using the same priority score and similar algorithms 9.

7See Appendix E.1 for additional details on college category.
8See here for an example of comments about mistakes in college applications (in Chinese).
9Students can rank four second-tier colleges and four third-tier colleges
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2.3 Data

The first dataset is the administrative data generated by the centralized admission system

that records the application behavior of students from 2014 to 2018. This dataset is main-

tained by the Ningxia Provincial Education Authorities. The second dataset is an online

survey experiment that we set up in 2020. It also targets CEE takers in Ningxia applying

to first-tier colleges, the same group of students we analyze in the administrative dataset.

(I) Administrative Data We obtained access to administrative data from 2014 to 2018,

covering around 9,000 first-tier eligible science track students in each admission cycle. The

number is considerably lower for humanities track students, amounting to roughly 2,000.

The data contains students’ CEE scores, ROLs, admission outcomes, and some demographic

information, including the county, city and street of their residence address (available only

in 2015, 2017, 2018).

(II) Online Survey In August 2020, we carried out an online survey that targeted high

school students who had applied for first-tier colleges in 2020. Four local high schools actively

encouraged students to take our survey. As a result, while any first-tier eligible applicants in

Ningxia could respond to our online survey, our sample mainly consists of students from these

four high schools. We were able to collect 1,412 complete and effective responses, roughly

15% of the total number of first-tier college applicants in 2020. As shown in Figure A1, the

survey was conducted right after students submitted their ROL for first-tier colleges, but

before they were notified of the admission outcomes10. The survey consisted of three parts.

The first part elicited basic information, such as their final ROL, high school, gender, age,

parents’ education and occupation, CEE score, source of application advice, and preferences

over college characteristics. The second part elicited their beliefs about the unconditional

admission probability11 of the colleges on their ROL (0% ∼ 100%) and how satisfied they

would feel (0-100) if they were admitted to a particular college. The third part consisted

of several incentivized risk-taking questions that were presented in the form of a ROL and

lottery, which are discussed in detail in Section 5.2.

10We choose this particular timing for three reasons. First, in order to best approximate students’ infor-
mation set, the survey had to take place after students had been notified of their score and had spent time
researching colleges. Second, high school officials believed that the survey might distract some students from
the high-stakes and time-sensitive application process, so we postponed the survey until after the college
application deadline.

11The question asked students to guess the probability of meeting the admission cutoff of the college in
question. Based on feedback from teachers and students in a pilot, admission cutoff is a very basic concept.
The most natural way to elicit beliefs about admission probability was to ask students about their belief
that their scores would meet the admission cutoffs.
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3 Decision Problem

3.1 Setup and Mathematical Notations

To mathematically describe the decision problem in our setting, consider a student, Mei, who

needs to list four colleges from a set of n colleges on her ROL. After she submits her ROL,

along with other students, the centralized admission system will process their ROLs using

the Constrained Deferred Acceptance Algorithm (DAA). Then, Mei either will be assigned

to one of the four colleges that she listed on her ROL, or will be rejected by all four colleges

and end up with her outside option. We assume that the number of students m is much

larger than the number of colleges, n.

Mei is playing an incomplete information game12, where she does not know the ROLs

submitted by other students and has to form beliefs about what the other lists could be. As

discussed in Section 2.1, because students have been notified of their scores and corresponding

provincial rankings when they apply, the admission outcomes solely depend on the cutoffs

of the colleges that they apply for, unknown at the time of list submission. Hence, instead

of thinking about others’ lists, Mei only needs to form her beliefs about the distribution of

cutoffs.

Based on beliefs about the distribution of cutoffs, Mei will assign probabilities of meeting

the cutoffs of the n colleges that she is contemplating. Denote the probability of vacancy

availability (i.e.,unconditional assignment probabilities or probability of meeting the cutoff)

of the n colleges by p1,p2,...,pn respectively. For the purpose of presentation and without

loss of generality, assume that p1 < p2 < ... < pn (that is, colleges are ranked from the most

competitive ones to the least). Denote the utility of admission to colleges by u1, u2, ..., un

respectively. The utility of Mei’s outside option is u. For any single college j, the only two

characteristics that Mei needs to care about are its admission utility uj and unconditional

admission probability pj.

3.2 Estimate Probability pj from Data

As discussed in the previous subsection, one of the two components of this decision problem

is the unconditional probability pj, for which we need to construct measures to approximate

what students think. To that end, we proxy students’ beliefs using admission cutoffs in the

past, which are publicly available shortly after the end of each previous admission cycle13.

12This treatment is conventional in this literature. Examples include Agarwal and Somaini (2018); Kapor
et al. (2020); Calsamiglia et al. (2020).

13See here for a well-known website that documents past admission cutoffs.
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The cutoffs in past years can reliably predict the current cutoffs. In Figure 1, we plot

the cutoff in its converted form in a specific year (e.g., 2018) against the cutoff the previous

year (e.g., 2017) for all the colleges that admitted Ningxia students during this time period.

We find that the correlation between a cutoff and its past year counterpart is around 0.95;

it would be even higher, except that a few outliers significantly drag the correlation down.

The median of the distance between realized cutoffs and the college-level average during

2014-2018 is 0.097 of a standard deviation of priority scores among science-track applicants,

and 0.146 of a standard deviation of the distribution among humanity-track applicants.

Importantly, the uncertainty is larger among less competitive colleges, as the scatter at the

bottom left of each graph is more likely to be away from the 45-degree line.

To calculate probabilities, we assume that for college j, in year t, the cutoff cjt is normally

distributed:

cjt ∼ N(µj, σ(µj))

where the value of µj is the average of admission cutoffs for college j during 2014-2018, which

reflects the overall competitiveness of a college across years. The assumptions about the value

of µj are motivated by the informativeness of past cutoffs. We compute the distribution of

cjt − µj in Figure A2a, and find that the distribution function is a bell-shaped function

that is centered around zero, with reasonably thin tails, suggesting that it is possible to

approximate the true distribution with a hybrid of normal distributions.

Based on the observation from Section 1 that the predictability is heterogeneous across

colleges of different competitiveness, we assume that the mean of ln(σj) is a fourth-order

polynomial of µj:

E[ln(σj)|µj] = β0 +
4∑

k=1

βkµ
k
j

We estimate the model using maximum likelihood, for the science and humanity tracks,

respectively. We then use the estimated β̂ to predict σj:

σ̂j ≡ exp(β̂0 +
4∑

k=1

β̂kµ
k
j )

With the estimation, the probability of meeting the cutoff of college j is:

p̂ij ≡ Φ(
si − µj

σ̂j

)

where Φ(.) is the CDF of standard Gaussian.

We follow Kapor et al. (2020) to validate the estimates of admission probabilities. Specif-
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ically, we analyze individual level data on admission outcomes by running the following

regression:

1(Admitted to First Choices)i = α1 + β1p̂ij

where subscript j represents students’ first choices. The null hypothesis that the esti-

mated admission probability is accurate implies that α1 = 0 and β1 = 1.

The results suggest that our estimates provide a reasonable approximate to actual prob-

ability. As shown in Columns (1) and (2) of Table B2, α̂1 = 0.0056 (SE=0.0024) and 0.0019

(SE=0.0041) for the science and humanity tracks, respectively, and β̂1 = 0.9997 (SE=0.0043)

and 0.9954 (SE=0.0084) in the science and humanity tracks, respectively. While the null

hypothesis is statistically rejected for the case of science track, the deviation from null hy-

pothesis is quantitatively small. In Figure A2b, we divide colleges into four groups of equal

size according to their competitiveness and plot the kernel density estimation of the distri-

bution of cjt − µj for each group respectively. The figure shows that our model can well

approximate such empirical patterns.

3.3 The Optimal Rank-Order List

Given the beliefs about the unconditional admission probability of colleges, as well as the

utility of admission for each college, playing Bayesian Nash Equilibrium in this context

reduces to finding out the optimal portfolio for Mei. Specifically, suppose that Mei’s ROL is

(j1, j2, j3, j4), and the utilities and probabilities are (uj1 , pj1), (uj2 , pj2), (uj3 , pj3), (uj4 , pj4),

respectively. Given her list, she will be admitted to college j1 with probability pj1 . Under

constrained DAA, she will be considered by college j2 only when college j1 has rejected

her; thus, the probability of being admitted to college j2 is (1 − pj1)pj2
14. Similarly, the

probabilities of being admitted to colleges j3 and j4 are (1−pj1)(1−pj2)pj3 and (1−pj1)(1−
pj2)(1− pj3)pj4 , respectively. Her expected utility from the portfolio {j1, j2, j3, j4} is:

EU([j1, j2, j3, j4]) ≡ pj1uj1 + (1− pj1)pj2uj2 + (1− pj1)(1− pj2)pj3uj3 + (1− pj1)

(1− pj2)(1− pj3)pj4uj4 + (1− pj1)(1− pj2)(1− pj3)(1− pj4)u
(1)

Considering joint assignment probabilities for a group of colleges at the same time sub-

stantially complicates the decision problem because the chance of admission at one college

14Here we are assuming that admission probability is independent because we believe that this is a reason-
able approximation in our empirical setting. See Section E.3 for a detailed discussion of why this assumption
is justified.
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depends on the chance of admission at the colleges that the student has ranked above it.

This interdependence implies that decisions should not be made by considering each pro-

gram sequentially, viewed in isolation. Instead, Mei should consider admissions probabilities

arising from a complete ROL, and thus optimal decision-making requires picking an optimal

portfolio out of a large number15.

To understand what an optimal portfolio should look like, suppose Mei’s best list is

[a∗, b∗, c∗, d∗]. The risk taking behavior depends on Mei’s preference profile

Vertical Preferences In case of vertical preferences (i.e. higher risk is associated with

higher desirability), we know that pa∗ < pb∗ < pc∗ < pd∗ , a qualitative prediction that we

can directly test using the administrative data alone. The optimal amount of risk to take

is different across positions. For example, pd∗ needs to maximize pdud + (1− pd)u, whereas

pa∗ needs to maximize paua + (1− pa)EU([b, c, d]). The fact that EU([b, c, d]) > EU(∅) = u

implies that Mei needs to worry less about the downside of missing the risky college she

pursues (i.e., the utility that follows (1 − p) in each expression). Consequently, it is the

colleges that the student ranks below the current choice, not the colleges ranked above

it, that matter most for the optimal choices. Hence, backward induction, a decision rule

unnatural to human cognition, becomes useful in this process:

• (blank) → (blank) → (blank) → d → (outside option)

• (blank) → (blank) → c → d → (outside option)

• (blank) → b → c → d → (outside option)

• ......a → b → c → d → (outside option)

Horizontal Preferences In this case, we can no longer deduce pa∗ < pb∗ < pc∗ < pd∗ from

ua∗ > ub∗ > uc∗ > ud∗ , because, if any pair of colleges j1 and j2 that reflect Mei’s horizontal

preference are both present on the list, the more competitive one, which is less desirable in

terms of Mei’s preference, would be ranked lower.

Optimal Decision Rule Regardless of Preferences Chade and Smith (2006) find

that a decision rule, Marginal Improvement Algorithm, can achieve the global optimum by

selecting one college at a time. In each step, the optimum depends on the colleges that

have already been included in the portfolio in previous steps. The procedure coincides with

backward induction in the case of strong vertical preferences, while the mapping between

15To be precise, the number is
(
n
4

)
, which amounts to 4 billion in our context.
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step number and list position becomes more complicated for other preference profiles. The

commonality, however, is that the decision needs to be converted into a dynamic problem

where the current choice is interrelated with the choices in the past steps.

3.4 Formulation of the Directed Cognition Model

The rational benchmark in Section 3.3 proposes that the optimal portfolio can be reached

by decomposing the problem into four different discrete choice problems. The correct de-

composition of this problem requires student applicants to appreciate the interdependence

between choices, because it is the colleges that they list below a given rank, not those above

that rank, that affect the optimal choice for the given rank. Literature in experimental

economics, however, has established that, even in simplified settings, subjects have trouble

grasping the concept of backward induction (Camerer et al., 1993; Johnson et al., 2002).

Moreover, laboratory evidence suggests that decision-makers lack the ability to cope with

uncertainty in simple decisions (Mart́ınez-Marquina et al., 2019), a skill that is necessary to

assess the distribution of utility for the lower-ranked choices.

In this subsection, we continue to use the setting in Section 3, and introduce an alternative

boundedly rational decision rule that is inspired by the Model of Directed Cognition in

Gabaix et al. (2006) (the DC Model). We believe that this decision rule explains students’

suboptimal strategies when they cannot apply the optimal strategy as prescribed in Chade

and Smith (2006). The rule prescribes that, instead of tracking all the information and acting

optimally upon it, another student applicant, Hua, due to cognitive limitations, myopically

focuses on the spot where he is actively contemplating which college to fill in, and neglects

the impact of that choice on the rest of the list. He fills out his ROL in a natural order,

from the first choice to the fourth choice. Mathematically, in step i, Hua maximizes

piui + (1− pi)u (2)

As a result, in each step Hua is making choices for essentially the same decision problem.

That is, he maximizes the expected utility of a portfolio that consists of his current choice

and the perceived outside option, as described graphically below:

• Step 1: j1 → (blank) → (blank) → (blank) → (Outside Option)

• Step 2: j1 → j2 → (blank) → (blank) → (Outside Option)

• Step 3: j1 → j2 → j3 → (blank) → (Outside Option)

• Step 4: j1 → j2 → j3 → j4 → (Outside Option)
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This decision rule requires less cognitive capacity for two reasons. First, Hua is proceeding

in a natural order by considering the first choices before the rest of the ROL. Second, because

Hua is making choices for each spot in isolation, the source of uncertainty is reduced and he

only needs to consider at most two states: admission to a first-tier school, or rejection by all

four of his choices and getting the utility of the outside option.

4 Summary Statistics on Risk-Taking Behavior

Section 3.3 and 3.4 have introduced both the Rational Rule and the DC Rule. They yield

different predictions regarding basic risk taking behavior on the list, which are discussed in

Section 4.1. We present data analysis that supports the presence of the DC Rule in Section

4.2 and Section 4.3.

An important feature of our setting is that some students who barely meet the minimum

requirement of first-tier colleges have limited options because of their low priority score.

Therefore, mechanically they are much more risk-taking than those whose priority score is

above the minimum by a comfortable margin. We therefore focus on the top 60% in this

and subsequent sections16.

4.1 Predictions: Cautiousness and Competitiveness Reversal

Compared to the rational decision rule, the DC decision rule yields substantially different

predictions about the patterns of risk taking. To mathematically describe the differences

between the rational benchmark and the DC Rule, consider Hua, who is choosing between

two colleges, a or b, to list as his choice in the qth spot. College a is more desirable and riskier

than b, thus pa < pb. Hua needs to compare Ua ≡ paua + (1 − pa)PFq, the expected utility

of choosing a, to Ub ≡ pbub + (1− pb)PFq, where PFq is the perceived expected utility of a

portfolio that consists of all the choices below the qth choice, including the outside option.

Define the propensity to take risk as a function of spot position (i.e. the qth choice) and the

decision rule (Optimal or DC)

f(q, decision rule) ≡ Ua − Ub = paua − pbub + (pb − pa)PFq

Here, the greater Ua − Ub is, the more appealing it is to take risks and choose a.

16Figure A3a presents the bin-scatter plot of the mean probability for the four choices conditional on the
quantile of priority score. We can see from the figure that, for the bottom 5% in terms of priority score,
even the mean probability of the fourth choice is less than 20%, as these students really don’t have any safe
choices. The mean probability for all the four choices rises simultaneously, with this trend stopping when
the priority score quantile is around 40%.
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Prediction 1 (Top-Choice Cautiousness) For any choice q < 4, the Rational Rule takes

more risks in listing their first choice than the DC Rule. Moreover, the gap in risk-taking

between the Rational and the DC Type is decreasing in q.

.

This prediction holds because Mei can correctly calculate the expected value as PF1 >

PF2 > PF3 > PF4 = u, whereas Hua ignores the rest of the portfolio and makes decisions

as if PF1 = PF2 = PF3 = PF4 = u. Mei’s cautiousness is as great as Hua’s in the fourth

spot. As Ua−Ub is increasing in the expected utility of the backup list, Mei is more inclined

than Hua to make a risky move for higher-ranked spots. The risk-taking gap between the

DC Rule and the Rational Rule will be maximal for the first spot.

Under the assumption of vertical preferences, the DC decision rule also has implications

for the order of admission probability for the listed colleges:

Prediction 2 (Competitiveness Reversals) Under vertical preferences, the ROL of the

Rational Type always features decreasing utility and increasing admission probability (that

is, ua > ub > uc > ud, pa < pb < pc < pd). A DC Type, in contrast, may exhibit ”risk-taking

reversal” by putting a riskier college in a lower-ranked position, leading to dominated choices.

This prediction holds because, for Mei, riskier colleges should also be put in higher-ranked

positions. For Hua, however, f(i,Rational) = f(j,Rational) because only the outside option

is regarded as his backup list. For example, Hua may list c before d, not because c is more

desirable, but because its probability is higher: pcuc + (1− pc)u > pdud + (1− pd)u.

4.2 Summary Statistics on Admission Probability

Distribution of Admission Probability for the Four Choices Table 1, Panel A

presents the summary statistics of unconditional admission probability that we construct as

described in Section 3.2, for each choice on the lists. The mean probability for the first and

fourth choices is 45.96% and 90.90% respectively, consistent with the prediction from the

rational benchmark that students should be pursuing more risks for top choices.

However, substantial share of students are not taking risks in their first choices, as the

75th percentile of probability is 84.30%. On the other hand, the heterogeneity of probability

is minimal for the fourth choices, where the 25th percentile is 95.52%, suggesting that the

vast majority of students are taking little risk for their bottom choices, which makes sense

in a high-stakes environment.
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Share of “Competitiveness Reversal” The rational decision rule and vertical prefer-

ences jointly predict that the probability should be lower for the higher-ranked choices. To

quantify students’ strategy in this dimension, we construct risk-taking reversal, namely, a

”flip” of the probability of colleges, to quantify the violation of benchmark prediction. As

our goal is to capture risk-taking reversal anywhere on the ROL, we consider the following

statistics:

R ≡ maxj>i{pi − pj}

In the expression of R, we take the maximum for the probability gap between any pair

of choices to capture the most serious competitiveness reversals on the ROLs. We report

the results in Table 2, Panel A, and find that 61.51% of the ROLs exhibit competitiveness

reversals (R > 0%). Further limiting our scope to the case of “serious” reversals, where

an ROL is counted only when R exceeds a certain positive threshold (R% > 25%,R% >

50%,R% > 75%), the share mechanically decreases but remains non-negligible. For example,

the share is 23.74% when the restriction is R% > 25%.

In summary, the data suggests that a substantial proportion of students are quite cautious

even for their first choices, and many of them exhibit “competitiveness reversals” on their

lists. This clearly rejects the joint hypothesis that students have perfect vertical preferences

and are following the rational benchmark.

4.3 Socioeconomically Disadvantaged Exhibit More

Top-Choice Cautiousness and Competitiveness Reversals

A large literature documents that socioeconomically disadvantaged students are worse at

strategizing in centralized systems (Lucas and Mbiti, 2012; Ajayi, 2013; De Haan et al.,

2015; Shorrer and Sóvágó, 2018; Kapor et al., 2020). We choose average educational attain-

ment at township level to approximate socioeconomic status17. We match the township level

educational attainment data to individual students in the administrative dataset, and plot

the distribution of this measure in Figure A4. We split students into four groups accord-

ing to their SES, and focus on the most advantaged quartile and the most disadvantaged

quartile. Because Ningxia accounts for only about 0.7% of China’s area, and all but two

first-tier colleges are located far outside the province, the difference in township should not

significantly alter geographic proximity.

17Roughly speaking, township is equivalent to zip code in the US. We obtain statistics on average years of
education among adults between 40-65 at township level from the China Census in 2010, as well as access
to students’ home addresses in 2015, 2017, and 2018.
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In Figure 2a, we compute the statistics in Section 4.2 for the most advantaged and the

most disadvantaged quartile, respectively. The mean probability of the first choices among

the socioeconomically disadvantaged students (54.6%) is less than their advantaged counter-

parts (44.7%). However, for their fourth choices, the probability among the disadvantaged

(92.1%) is slightly less than their advantaged counterparts (92.7%) 18.

We run the following regression to quantify the difference statistically:

Outcome = βDisadv + f(Priority Score) + Disadv ∗ g(Priority Score) + controls (3)

where Disadv indicates whether students are from a lower SES group, and f(Priority Score)

and g(Priority Score) represent a fourth-order polynomial of priority score19. The main ef-

fect of Disadv, β, is the overall outcome gap between students of different SES groups after

priority score has been fully controlled, as well as the heterogeneity in whether the outcome

gap changes with the priority score.

As shown in Table 1, Panel B, the results confirm our visual perception regarding the first

and fourth choices. After a full set of controls is introduced, the gap between the advantaged

and the disadvantaged with regard to fourth-first choice probability differences amounts to

9.13% (SE 0.75%). Panel C demonstrates that the gap is robust to priority score.

Figure 2b plots the share of reversals for the most advantaged and disadvantaged quar-

tiles, respectively. The gap in the share of reversals between disadvantaged and advantaged

remains about the same, and is robust to the threshold. When the threshold X% is 25%,

for example, the share of reversals among the advantaged is 19.1%, and the weighted share

of reversals among the disadvantaged is 22.9%, roughly 20% higher than the advantaged.

In Table 2 we plug in “share of reversals” as the outcome variable in Equation 3. In

each column, we vary the threshold X so that it equals 0, 25, 50, or 75% in Columns 1, 2,

3, and 4, respectively. As reported in Panel B, the results are consistent with the graphical

observation, with the gap in the share of reversal remaining at about 5%; as Panel C shows,

the results are robust to the level of priority score.

To examine whether the admission outcomes are worse among the disadvantaged, we run

the following regressions:

18All the statistics in Figure 2 have been reweighted to take into account any differences in priority score.
Please refer to Figure A3b for a complete breakdown of admission probability by priority score, across
students in the most advantaged and most disadvantaged quartiles.

19Each of the terms in the polynomial has been demeaned so that the main effect β is the predicted
Adv-Disadv Gap at average level of priority score.
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Selectivity of Admitting College = 1(SES Quartile) + f(Priority Score) + Controls

where we measure the selectivity of the admitting college by calculating the average

admission cutoffs for the colleges during 2014-2018. We report the regression results in Table

B3, Panel A. The results in Column 1, for example, suggest that the most disadvantaged

quartile (1st Quartile) on average end up in colleges whose selectivity is 0.1288 (SE=0.0082)

of a standard deviation worse compared to the most advantaged quartile (4th Quartile).

5 Survey Experiment: Testing Framing Effect

The DC Model generates more first-choice cautiousness and competitiveness reversals. Evi-

dence in Section 4 seems to indicate that the risk-taking behavior of many applicants is in

line with what is predicted by the DC Model, and that the DC Type may be more prevalent

among the disadvantaged. However, risk-taking behavior can also be affected by horizontal

preferences, information frictions, or subjective beliefs.

To tackle these issues, we design a survey experiment in which students make college and

lottery choices. The monetary incentive and risk of these hypothetical colleges are designed

to test the predictions of the DC Rule that are not susceptible to college preferences, beliefs

about assignment probability, or information frictions in real college choices.

5.1 Prediction: Framing Effect under Arbitrary Preferences

Consider what leads to a DC Type’s suboptimal strategy. The correct utility of choosing

college a for the rth choice is

Ua ≡ paua + (1− pa)Ur

where Ur is the expected utility of the portfolio that consists of everything below the

rth choice on the list. A DC Type’s trouble is that, when the question is presented in a

ROL, they fail to calculate Ur and instead treat it as u0. When this is not presented in the

form of a ROL question, but in the form of the mathematically equivalent lottery choice

(pa, ua; (1 − pa), Ur), the payoff in the event of rejection has been calculated and presented

clearly so that the DC Type cannot distort it. Effectively, choices presented in the form of

a lottery can “de-biased” by bringing the utility of backup choices to the decision-makers’

attention so that their cognition is no longer directed to a single spot. Let U ′
r denote the
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perceived expected utility of the portfolio that consists of everything below the rth choice.

Mathematically, this prediction holds because, for the Rational Type, U ′
r = Ur, regardless

of whether the problem is presented in lottery representation or ROL representation. For

the DC Type, U ′
r = Ur if it is presented in lottery representation, but U ′

r = u0 < Ur if it is

presented in the ROL representation. Hence, we have the following prediction:

Prediction 3 (Framing Effect) Suppose all the possible portfolios that are framed as ROL

have been correctly transformed into their lottery representation. A Rational Type will behave

consistently across ROL and lottery questions. By contrast, the DC Type will be more risk-

taking in the lottery questions.

5.2 Design of the Survey Experiment

The core of the survey experiment consists of three groups of incentivized questions. The

first and third group of questions asked students to choose the amount of risks they prefer in

each hypothetical situation. They need to choose between College X and College Y, whose

unconditional admission probability and payoffs in the event of an “admission” in the game

have been specified in Panels A2 and C2 of Table B4, respectively, and fill in the first spot

of the ROL. For each multiple price list, there are seven questions in total, as presented

in the table, where the payoff of X is held constant (admission probability is 50%, get 25

CNY if “admitted” in this scenario), and the payoff of Y is in increasing order (admission

probability is 25%, get 30, 35, 40, 45, 50, 55, 60 CNY if “admitted” in this scenario). The

second, third, and fourth spots of the ROL have been pinned down, as shown in Panel A1

and C1 of Table B4, where one of them will definitely “admit” the student applicant if she

is not “admitted” to the first spot. The rules of admission for both groups of questions are

exactly the same as the real admission procedures, with the only difference being that the

payoff of being “admitted” to lower ranked colleges in Question Group 1 is 20 Chinese Yuan

(CNY), whereas the amount in Question Group 3 is merely 5 CNY. These binary choice

problems feature the core tradeoff in our setting: if students wish to take more risks and

choose a more desirable college for their first choices, they must face a greater risk of being

admitted to backup choices, whose payoffs are considerably lower.

The second group of questions is mathematically equivalent to the first one, but is asked

in the form of its lottery representation. This group has seven questions as well. Lottery

X, whose payoff structure is (25 CNY, 50%; 20 CNY, 50%) delivers the same distribution

of payoffs as College X in Question Group 1, and is held across questions. The payoff

structure of Lottery Y is (30 CNY, 25%; 20 CNY, 75%), (35 CNY, 25%; 20 CNY, 75%),

... (60 CNY, 25%; 20 CNY, 75%), respectively, which is mathematically equivalent to the
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payoff of College Y in Question Group 1. In terms of framing, however, Question Group 2

differs from Question Group 1 in that the probability and payoff of rejection from the first

choice are included in the choices, as shown in Panel B of Table B4. Because the DC Type

in our setting choose their first college in isolation, they ignore the payoff of lower-ranked

colleges, and thus fail to translate the ROL problem to its correct lottery representation.

The inclusion of downside payment in the lottery precisely mutes the mistake from the DC

decision rule.

Students were directed to carefully read through our explanations about the questions

and complete comprehension checks before answering these questions. Since the payoff of

College/Choice X is held constant, whereas that of College Y is increasing, a coherent re-

sponse could switch from X to Y at most once. This point is clearly communicated in the

instructions and students are allowed to switch from X to Y at most once in their responses.

After the student applicants have submitted their ROLs during the experiment, we asked

them more application-related questions. The key questions which we intend to discuss are

listed below:

1. The ROL that they submit.

2. For each choice, what do they think is the chance of meeting its cutoff?

3. If only two colleges were allowed to be included in a list, which two would they choose?

4. If only one college was allowed to be included in a list, which college would they choose?

5.3 Analysis of Survey Data

Prediction 3 states that DC Type students appear to take less risk in ROL questions com-

pared to their (mathematically equivalent) lottery representations. We start our analysis by

tabulating the joint distribution of students’ responses to Question Groups 1 and 2 in Figure

3. About 65.5% of the observations are located in the blue blocks, indicating that students

are very cautious20 in both rank-order list and its lottery equivalent questions, or not very

cautious in both questions. Such behavior is consistent with, or does not substantially de-

viate from the Rational Decision Rule. Meanwhile, 30.8% of the students are very cautious

in the college choice problem, but not in the lottery equivalent questions. Such behavior is

indicative of the presence of the DC Type.

20As described in graph, being very cautious means that in terms of risk attitude, the students prefer
(50,25%;20,75%) to (25,50%;20,50%). The implied CRRA coeffiient for such risk attitudes is larger than 20.
Loss-averse with the fixed choice as reference point under small stakes as in Sprenger (2015) implies that the
decision maker’s loss aversion is larger than 6.35.
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Table 3, Panel A reports whether students with disadvantaged SES backgrounds, as

measured by parents’ average years of education, is associated with the aforementioned

behavior. Linear probability models with various sets of controls demonstrate that one

standard deviation of increase in the normalized SES index is associated with 4.1% to 4.7%

of increase in the probability of belonging to the red block (i.e. exhibiting substantial framing

effect predicted by the DC Decision Rule). This also relates to previous findings from the

administrative data in Section 4.3, where socioeconomically disadvantaged students are more

cautious only in the top spots of their lists and commit more competitiveness reversals.

To estimate the share of the DC Type in the survey sample, we model survey takers’

risk-taking behavior by assuming that students have power utility functions over money:

u = (c+B)ρ

where B is background consumption, which we set to be 10 CNY21. The power utility

curvature ρ are assumed to satisfy 0.05 ≤ ρ ≤ 1, and can vary on Edu, parents’ average

years of education, and CEE, the quantile of Priority Score:

ρ = min{max{0.05, α0 + α1SES + α2Score + ϵρ}, 1}

where ϵρ ∼ N(0, σ2
ρ).

The decision noise is added to the model by assuming that decision makers perceive

choice Y noisily. The lottery of Choice X and Y in Question Group 2 is denoted by X̃(20) ≡
(25, 50%; 20, 50%) and Ỹ (m, 20) ≡ (m, 25%; 20, 75%). For the Rational Type, the riskier

choice Y (m, b) and Ỹ (m, 20) is perceived as Y (m+ ϵ, b) and Ỹ (m+ ϵ, 20) respectively, where

N(0, σ2
ϵ ) is independent and identically distributed across individuals. For question 1 and

3, denote the lottery presentation of College X and Y by X(b) ≡ (25, 50%; b, 50%) and

Y (m, b) ≡ (m, 25%; b, 75%), respectively, where m is the payoff of first choices and b is the

payoff of backup colleges. For the Rational Type, they process the question correctly and

recognize its lottery representation. The decision noise is added in the same way as Question

Group 2. For the DC Type, the choices in Question Group 1 and 3 are perceived as X(0) and

(Y (m, 0) respectively, resulting in more cautiousness. The decision noise is added to m in

the same way. We additionally consider a third type that is established in the literature for

some of our specifications: the “sincere type” (Pathak and Sönmez, 2008; Calsamiglia et al.,

2020). The sincere type predicts that, in the ROL presentation, students will always prefer

colleges with the highest payoffs, ignoring the probability of admission. The decision noise

for this type is added to m, which is also the higher payoffs among choices. The variance

21Roughly the value of one meal in Ningxia.
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of decision noise σ2
ϵ is allowed to be different across question groups, but assumed to be the

same across different behavioral types.

We further assume in this mixture model that the share of the DC Type varies with

socioeconomic status:

Prob(DC Type|Edu, Score) = exp(β0 + β1SES + β2Score)

exp(β0 + β1SES + β2Score) + 1

We estimate this mixture model and present the main results in Table 3, Panel B. Includ-

ing DC Type in the estimation (Column 2) substantially improves the fit (Log Likelihood

= -8781.778, 9 parameters) compared to the model in Column 1 that only allows for the

Rational Type (Log Likelihood = -9100.574, 6 parameters). The improvement is substantial,

such that the Bayesian Information Criterion also favors the mixture model (BIC metrics

= 17628.83) over the single-type rational model (BIC metrics = 18244.66). The impact of

including the sincere type (Column 3), while it also improves the fit, is limited compared to

the DC Type (Log Likelihood = -8780.909, 10 parameters). In line with this observation,

the estimated share of the DC Type is 50.4% in our preferred specification. The marginal

effect of socioeconomic status is also statistically significant, where a 1 SD increase in the

SES Index is associated with a 5.5% (SE=1.8%) decrease in the share of the DC Type.

5.4 Framing Effect Predicts Risk-Taking Behavior in College Choices

If the DC Type indeed exists among the participants of the survey experiment, we would

expect their real college choice patterns to exhibit what is described by Prediction 1 and 2 as

well. Moreover, the DC Decision Rule is differentiated from the Rational Decision Rule by

prescribing that decision-makers make choices in a forward way rather than doing backward

induction when competitive colleges are mostly of higher desirability22. As a result, we would

expect the DC Type to pick the top colleges, rather than bottom colleges as prescribed by

backward induction, had they been allowed to include at most two colleges on their list.

Table 3, Panel C presents the mean statistics of students’ college choices by whether

they exhibit substantial framing effect (i.e. belong to the red block in Figure 3 ). It appears

that applicants who are very cautious in the college choice problem but not in its lottery

equivalents are substantially more likely to state that they would have picked their top

choices in the original problem if the list is shortened such that they can only list up to

one or two colleges. Moreover, these students are significantly more likely to believe that

they have picked safer colleges for the top spot (i.e., top-choice cautiousness) but not for the

22As discussed in Section 3.3, in the presence of substantial horizontal preferences, there are exceptions
when the Rational Rule does not imply backward induction
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bottom spot, and that they have committed competitiveness reversals.

6 Testing Upward Movement

With administrative data alone, we show in this section that a particular variation in priority

score will help differentiate the DC Model from various forms of horizontal preferences and

other alternative hypothesis.

6.1 Prediction: Position Movement in ROL

This subsection presents another prediction that distinguishes the two decision rules with

minimal parametric assumptions on college preferences. We characterize the choice pattern

of any single college, A, as priority score (consequently, the assignment probability of A23)

changes. For an arbitrary preference profile u (a utility vector that represents preferences

over all colleges), if A appears on the list given a specific priority score s, where would A be

if s were higher?

To understand the result intuitively, consider that, under the rational decision rule and

preference u, A is a particularly attractive college and will appear on the list for some s. If s

is too low, such that being admitted to A is impossible, A will be omitted because listing it

wastes a spot. However, as s becomes higher, A appears on the list as soon as the admission

probability is high enough. As s continues to move higher, more colleges become possible

options for u. Consequently, A will remain in the same place if none of the newly possible

options are better than A, and will move down the list if any newly possible option is better

than A and has a favorable chance. Figure 4a presents an example in which the position of

a college evolves as priority score changes. Note that, on the horizontal axis, priority scores

have been converted to admission probability of A to make the graph comparable.

To mathematically describe the result, define function R that maps preference profile u,

priority score s, college A to its position κ on the list under the rational decision rule:

R : (u,A, s) 7→ κ

where κ is 0 if A is omitted from the list. κ takes the value of 4, 3, 2, 1 if A

is the first, second, third, and fourth choice, respectively. The following theorem

characterizes R:

23Probability of meeting the cutoff of A.
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Theorem 1 Under Assumption 1, 2, 3, for any preferences u, college A, and s0 such that

R(u,A, s0) ≥ 1, if s > s0, then R(u,A, s) ≤ R(u,A, s0). Moreover, for any κ ≥ 1, the set

CRN
(u,A,κ) = {s|R(u,A, s) = κ} is connected.

The key assumptions, as detailed in Appendix D, mean that increases in priority score

will make the assignment probability of the safer college increase at a lower rate compared

to the riskier one. As discussed in Appendix D, this statement is true for any pair of colleges

whose cutoff distribution is log-concave24 and of the same dispersion. The assumption is

testable, and largely holds in our setting because we assume the cutoff distribution is normal

and colleges of similar competitiveness have comparable dispersion of the cutoff distributions.

Similarly, define function D that maps preference profile u, priority score s, college A to

its position κ on the list under the DC decision rule:

D : (u,A, s) 7→ κ

D is different from R in that a particular college need not move down the list as s

increases. College A is not listed when s is too low, for similar reasons. As s increases,

however, A first appears at the fourth choice once its probability is just high enough to

exceed the previous fourth choice, which is the least appealing one on the list in terms of

pAuA
25. If uA is higher than other listed colleges (despite lower probability, which results

in lower pAuA overall), A may move up as s increases, because pA affects how A is ranked

under the DC rule. A starts to move down gradually if s is so high that better colleges

are within reach. Figure 4b presents an example where the position of a college evolves as

priority score changes, where priority scores have been converted to admission probability of

A on the horizontal axis. Compared to Figure 4a, it becomes apparent that the “climbing

up to the top” movement to the left of the peak in Figure 4b distinguishes DC from the

rational rule. The following theorem mathematically characterizes D, when Assumptions 1,

2, 3, as detailed in Appendix D, hold:

Theorem 2 Under Assumptions 1, 2, 3, for any preferences u and college A, if there exist

s and s̄ such that D(u,A, s) = 0 and D(u,A, s̄) = κ, then for any integer ξ ∈ [1, κ], there

exist s ∈ [s, s̄] such that D(u,A, s̄) = ξ.

The derivations of both theorems are detailed in Appendix D. Note that the assumption

about the tie of expected utility is not essential, because, if we assume that students choose

24Log-concave distributions include normal distribution, uniform distribution, exponential distribution,
logistic distribution, extreme value distribution, Pareto distribution, etc.

25For the sake of convenience, the outside option in this subsection is assumed to be 0.
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randomly if more than two colleges tie, similar results emerge. When the assumption of both

theorems hold, together they imply the following prediction:

Prediction 4 (Upward Movement) In response to increase in priority scores, for any

preferences, previously listed colleges will only move downward on the list under the rational

decision rule, but may move upward under the DC decision rule.

6.2 Variations in priority score that are orthogonal to preferences

Conditional on the same exam performance, the same academic ability leads to different

provincial rankings of priority scores in different years. As discussed in Section 2, the college

entrance exam consist of four subjects, and priority score is determined by summing up

the raw scores of all subjects. However, the difficulty of subjects varies from year to year,

such that the dispersion of students’ performance does not move in the same direction, as

demonstrated in Figure A6a. Given the unpredictability of subject difficulty, the way in

which students’ true academic ability is aggregated changes exogenously from year to year.

For example, a student who is good at math may have a higher total score in a year where

the math test is more difficult. To quantify the impact of such idiosyncratic aggregation, we

regress rank-preserving score26 on the polynomials of percentiles of each subject:

Rank-Preserving Scorei = f(Chinese%i,Math%i, English%i, Comprehensive%i) + νi (4)

If the regression is run within each year, the score should be mechanically predicted by the

quantiles perfectly. If we run the regression over the whole sample (i.e., 2014-2018), quantiles

cannot perfectly predict the score because of the cross-year change in score aggregation,

as shown in Figure A6b. This regression thus decomposes the rank-preserving score into

two orthogonal components, the predicted academic ability f̂i and the residual ν̂i. ν̂i is

approximately normally distributed, creating additional variation whose standard deviation

amounts to roughly 2 points in the priority score. While small, this creates enough variation

for us to test the prediction in Section 6.1.

6.3 Testing Upward Movement in ROL: Data Analysis

For each student i and its selected college j, we divide the students according to the predicted

probabilities in the absence of the score shock ν̂i (i.e., the probabilities converted from the

26Converting raw CEE score to its 2018 rank-preserving equivalent, as in Section 1.
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predicted ability f̂i) into ten groups: 0.1% ∼ 10%, 10% ∼ 20%, 20% ∼ 30%, ... 80% ∼
90%, 90% ∼ 99.9% and generate ten dummies. This set of variables is aimed at capturing

any heterogeneity in preferences that are associated with students’ academic ability. In

other words, within each probability bin, students have essentially the same academic ability

and thus any changes in preferences that are associated with academic ability have been

controlled. Armed with the shock ν̂i, we run the following random-coefficient regression to

test our hypothesis:

yij = β(j,SES Quarter,Prob Bin)f̂i + γ(j,SES Quarter,Prob Bin)ν̂i + FEj ∗ FESES Quarter ∗ FEProb Bin + ϵij

(5)

where yij is the position of college j on student i’s list (i.e., the vertical axis of Figure 4a

and Figure 4b), FEj is the college fixed effects, which aim to capture average preferences over

college j non-parametrically, and FESES Quarter is a dummy for the socioeconomic quartile

that students belong to. The parameter of interest is the coefficient of score shock ν̂i (i.e.,

the “slope” of the movement in Figure 4a and Figure 4b) in each Prob Bin * SES Quarter

* College cell, without imposing any restrictions across cells.

Under the assumption that students’ preferences with regard to a specific college are

homogeneous within each Prob Bin * SES Quarter * College cell, any positive estimates in

γ(j,SES) that appear in any cluster would be interpreted as evidence of upward movement27.

In other words, students who have similar socioeconomic status and academic ability, and

choose to include the same college in their list (regardless of the position of the college), are

assumed to have homogeneous (not necessarily vertical) preferences.

Figure 4c summarizes the distribution γ̂(j,SES) by predicted admission probability in the

absence of score shock. When the probability is lower than 20%, the mean of γ̂(j,SES) is

positive, suggesting substantial presence of the upward movement. When the predicted

admission probability is above 20%, the estimated mean is around zero or negative. This

does not indicate absence of the DC Type, because the movement among the DC Type is

predicted to become downward when the probability is higher (Figure 4b). Moreover, the

heterogeneity in γ̂(j,SES) across college*SES cluster is not negligible even when the mean

estimate of γ̂(j,SES) is non negative. This finding also points to the massive presence of

upward movement for higher probability bins. The numeric value of the aforementioned

statistics are reported in Table B5.

27yij takes the value of 4, 3, 2, 1 if college j is listed as the first, second, third, and fourth choice respectively.
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7 Structural Estimation using Administrative Data

7.1 Prediction of the DC Rule & Intuition of Identification

Because we are relying on risk-taking behavior to separate the DC Type from the Rational

Type, once heterogeneous and horizontal preferences are incorporated into the model, it

becomes less obvious how a structural model can identify the DC Type. The variation we are

going to exploit is the variation in priority scores. As discussed in Section 6.2, conditional on

the same academic ability, the cross-year variation in ranking and the resulting probabilities

are arguably orthogonal to preferences.

How does this variation contribute to identification? A higher priority score increases

the assignment probability of all colleges, at different rates. As discussed in Agarwal and

Somaini (2018), with sufficient variation in assignment probabilities, it becomes possible to

identify the distribution of preferences. While we are not claiming that the variation we

have here is sufficient to identify arbitrary distribution of preferences, it is at least powerful

enough to help identify the intensity of preferences, as well as the presence of the DC Type,

as illustrated in the simplistic setting below.

Example There are four colleges, A1, A2, B1, B2. Let s denote priority score. A1 and

A2 are risky (but potentially more desirable) colleges. Both of them have unconditional

assignment probability pA(s) and admission utility δ > 0. B1 and B2 are safe colleges. Both

of them have unconditional assignment probability pB(s) > pA(s); they have admission

utility of 2 and 1 respectively. All the probabilities are independent. Students need to select

two colleges from the four under a constrained Deferred Acceptance Algorithm. The utility

of the outside option is 0.

Identifying Preference Intensity from Score Variation: Binary Choice Suppose

the second position must be left blank, and students must choose from A1 or B1. Then,

they choose A1 if and only if

δpA(s) > 2pB(s) ⇐⇒ pA(s)

pB(s)
>

2

δ
(6)

Figure A5 shows an example where different s leads to different ratio pA(s)
pB(s)

. When the

distributions of cutoffs of the two colleges are normal, as hypothesized in our setting, the ratio

of assignment probability of A1 to B1 will be increasing as the probabilities are increasing
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at different rates28. If we can observe an individual making choices given a different priority

score s, we would expect her to switch from B1 to A1 at some point. The earlier she switches,

the more she likes A1 over B1. Consequently, for a group of students, the rate at which

students switch from A1 to B1 identifies the density of δ.

Identifying DC Type Using Joint Changes in ROL When students select only one

college, by definition the DC Rule cannot be distinguished from the Rational Rule. With two

choices in the list, however, this becomes possible. As we observe how both choices change

in response to increasing s, optimality implies that both choices are changing. The changes

are jointly restricted because both are responses to the same preferences, as summarized by

δ.

There are four possible portfolio choices in this setting, (A1, A2), (A1, B1), (B1, A1),

(B1, B2). (A1, A2) features substantial risk-taking, which for convenience is labelled as

“reckless”. (A1, B1) features differential risk-taking in different positions (“diversifying”).

(B1, A1) features safer options before risky ones (“reversal”). (B1, B2) features minimal

risk-taking (“cautious”). We have the following results that help separate the DC Type

from the Rational Type as the probability ratio pA(s)
pB(s)

increases:

Proposition 1 As s increases, only the DC Type switches from “cautious” to “reversal”

when pA(s)
pB(s)

< 1
2
, and only the DC Type switches from “reversal” to “reckless” when 1

2
<

pA(s)
pB(s)

< 1.

Why cannot preference alone explain the switch to and away from “reversals”? The

reason is that the probability ratio pA(s)
pB(s)

, which is observable to us, contains information

about the magnitude of δ. When the switch happens with low pA(s)
pB(s)

, the switch implies that

preference intensity toward A1 and A2, δ, is high. For the Rational Type, high δ rules out

the possibility of a reversal. Moreover, the point at which the switch happens also reveals

the preference intensity of the DC Type. The rate at which the list switch happens identifies

the probability density of δ.

28As discussed in Appendix D, the ratio will be increasing for any log-concave distributions if the cutoffs of
the two colleges have the same dispersion. This scenario is largely in line with our hypothesis that the cutoff
distribution of any two colleges of similar calibre share a similar standard deviation. When the dispersion is
different, the range of the ratio usually will be wider, though not necessarily increasing in s.
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7.2 Setup

Structure of College Preferences We parameterize college preferences to implement

the structural estimation. For individual i, the utility of admission to college j is

uij = f(θCi , Cij, SESi) + g(θdi , dj, SESi) + h(θXi , Xj, SESi) +Oi + ϵij (7)

where Cij is the competitiveness of college j with respect to student i, and SESi is the

average educational attainment in student i’s township of residence. As detailed in Appendix

C, function f(.) controls the curvature over college preferences and takes the form of the

CRRA function, with the curvature parameter being θCi
29. θCi is normally distributed with

unknown variance, and the mean is allowed to vary across students of different SES levels.

We normalize dj as the distance between students’ home and the location of the college. Note

that subscript i is omitted. Since all but two first-tier colleges are located outside Ningxia,

and are clustered in metropolitan areas far away, the distances barely differ for students

living in different areas in Ningxia. Function g(.) controls preferences for distance and is

quadratic with parameter vector θdi . θdi is jointly normally distributed with an unknown

diagonal variance matrix, and the mean is allowed to vary across students of different SES

levels. h(θXi , Xj, SESi) controls the interaction between other college characteristics and

students’ socioeconomic status, with the interaction parameter θXi permitted to be normally

distributed, with unknown variance and SES-specific mean. Oi measures the desirability of

first-tier colleges overall relative to outside options. ϵij ∼ N(0, σ2
ϵ ) is the individual-college

specific shock to admission utility. Appendix C discusses all the details of the specification.

Mixture Model We estimate a mixture model where there are two types of students: DC

and rational. In this mixture model, we assume that share of the DC Type among students

is a function of the SES status of student i:

P (DC Type|SESi) =
exp(γ0 + γ1 ∗ SESi)

1 + exp(γ0 + γ1 ∗ SESi)
(8)

Admission Probability In the benchmark estimation, we use the estimated probability

p̂ij, as in Section 3.2. Appendix C discusses the case where one wishes to rely on students’

subjective beliefs in the survey experiment to conduct estimation.

29We ensure that Cij is positive by taking the difference between itself and the minimally competitive
college.
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7.3 Estimation Strategy

Following Section 4, we focus on students whose priority score percentile belongs to the top

60%, because these students’ choices are less constrained. We split our sample according to

students’ CEE score and conduct the estimation for 40% ∼ 60%, 60% ∼ 80%, 80% ∼ 100%

separately because students at different levels of academic ability tend to choose colleges of

different levels of competitiveness, as demonstrated in Figure A7.

We include moments such as the mean assignment probability of the first, second, third,

and fourth choices, as well as the share of reversals to target the moments that are directly

related to the predictions of the DC Model30. In this parameterized model, the moments on

characteristics of the listed colleges (physical distance, as well as share choosing a specific

type of college) jointly identify the distribution of choice over colleges, hence the horizontal

preferences over observables. As discussed in Section 7.1, curvature over competitiveness can

be identified by the mean of the assignment probability of a single choice. Other horizontal

preferences are assumed to be idiosyncratic, and thus bounded by the competitiveness of the

choice. Estimated values of the moments for students whose score belongs to the 40 ∼ 60,

60 ∼ 80, or 80 ∼ 100 percentile are reported in Table B11, B14, B17 respectively. The

moments are constructed separately for four SES quartiles to examine whether the share

of the DC Type is higher among the socioeconomically disadvantaged, compared to their

counterparts.

We use the Simulated Method of Moments to estimate this model. We simulate each

student’s choices 50 times, and calculate the simulated moments by averaging across different

rounds. The estimation minimizes the weighted distance between simulated moments m(θ)

and data m0:

min (m(θ)−m0)
′W (m(θ)−m0)

The estimator achieves asymptotic normality, with an estimated variance of:

(Ĝ′WĜ)−1(Ĝ′W (1 +
1

50
)(Ω̂/N)WĜ)(Ĝ′WĜ)−1

where 50 corresponds to the number of simulated choices for each observation (Laibson et al.,

2007; DellaVigna et al., 2016), Ĝ ≡ ∂m(θ)′

∂θ
and Ω̂ = V ar(m(θ̂)). In our estimation, to enhance

the efficiency of estimation, W is selected to be the inverse of the covariance matrix.

30Maximum likelihood estimation using ROLs, as in Agarwal and Somaini (2018); Calsamiglia et al. (2020);
Kapor et al. (2020), is relatively more difficult because the number of portfolios one could construct amounts
to billions in our setting. However, it may still be possible to use MLE in a computationally feasible way,
according to the techniques introduced in Larroucau and Rios (2018).
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7.4 Estimation Results

Table 4 compares the performance of a model that only allows for the Rational Type to

a mixture model that allows for both the Rational Type and the DC Type. While all

models are over-identified and rejected, the mixture model decreases the distance by 42.0%,

69.1%, 53.3% for the 40% ∼ 60%, 60% ∼ 80%, 80% ∼ 100% subsamples, respectively. This

improvement is substantial. The MMSC-BIC metric31 (Andrews and Lu, 2001), an analogue

of the Bayesian Information Criterion, favors the mixture model over the rational benchmark

as well.

The estimated share of the DC Type is 53.1% (SE=0.61%), 45.1% (SE=0.54%), 55.1%

(SE=0.55%) for 40% ∼ 60%, 60% ∼ 80%, 80% ∼ 100% subsamples, respectively. These esti-

mates are interestingly close to the estimate we get from the online survey (48.7%, SE=1.8%).

The estimates on the marginal effect of SES are negative, where 1 standard deviation of de-

crease in SES index is associated with a decrease of 3.71% (SE=0.57%), 3.68% (SE=0.56%),

6.02% (SE=0.55%) in the propensity of being a DC Type. This negative effect is slightly

less than the estimated effect from the survey (7.3%, SE=1.7%).

The estimated curvature over competitiveness is mild and sometimes positive, ranging

from -0.486 to 0.413 (ρ in the CRRA specification), with all standard errors below 0.1. In

summary, the levels of estimated curvature in both models are consistent with anecdotal

evidence on the perceived importance of competitiveness/cutoffs on college prestige.

Out-of-sample prediction of the mixture model is also substantially better than the one-

type rational model32. As demonstrated in Panel B of Table 4, compared to the one-type

rational model, the mixture model decreases the distance by 14.9%, 43.4%, and 47.2%,

respectively, and fits much better in the moments that are related to our predictions about

cautiousness and reversals.

The DC Model helps fit the key moments of the data. Figure 5 compares the overall

data and fit from the one-type rational model and the mixture model, for average risk-

taking (Figure 5a) and share of reversals with different thresholds (Figure 5b), respectively.

While both the one-type rational model and mixture model generate substantial reversals by

introducing heterogeneous preferences, the one-type model fails to explain the cautiousness

in the first choices by a fairly large margin (20%), while it predicts extreme cautiousness

(probability > 99%) for the fourth choices, contrary to the data, in which the mean of

31The formula for this metric is d− (m− p)ln(n), where d is the distance, m is the number of moments,
p is the number of parameters, and n is the sample size. The criteria favor smaller values.

32The structural estimation only uses the data from 2015, 2017, and 2018, because we have access to
township-level student addresses only in these years to measure SES in a more precise way. The measure of
SES in 2014 and 2016 is county-level adult educational attainment, which is substantially less precise, and
thus is left out of the estimation and used for out-of-sample testing.
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probability is around 90% for the fourth choices.

Although our model does not directly fit the estimates on upward movement, Figure

5c shows that, consistent with our theory, the estimated upward movement coefficient γ

obtained by running regression 5 on the simulated sample generated by the estimated mixture

model, is uniformly higher compared to that generated by the rational one-type model.

7.5 Welfare

The monetary measurement of welfare is motivated by the analogy that students’ priority

scores (determined by their exam performance, not by their college demand or strategy)

serve as their WTP for college education, and that the cutoffs of the colleges serve as the

prices of such services. We treat students’ priority scores as their “budget set”, and measure

the welfare change as the equivalent variation (EV) in terms of priority score. In other words,

for each individual applicant, the EV is the amount of change in its priority score in the

current equilibrium that results in the same change in expected utility had the score remain

unchanged under the new equilibrium.

To compute the counterfactual, we follow Kapor et al. (2020) by simulating how everyone

would react to others’ lists in the following two scenarios: (I) The system switches to Boston

Mechanism with four spots without changing its decision rule; (II) All applicants respond

optimally under the current system. We thereby obtain the new lists, and then use the new

lists to simulate the cutoffs, iterating until convergence.

De-Biasing Conventional wisdom suggests that the sophisticated usually take advantage

of the naive in a market setting (Gabaix and Laibson, 2006; Pathak and Sönmez, 2008),

such that de-biasing could be a zero-sum game. However, in empirical settings, the intensity

of vertical preferences may differ, and acting strategically will help students communicate

such intensity (Abdulkadiroğlu et al., 2011). We report our findings in Panel C of Table 4.

De-biasing improves the welfare of the 3rd, 4th and 5th quintiles of the DC Type, which

is equivalent to an improvement of 0.495, 0.253, and 0.082 of a standard deviation of the

priority score in the old equilibrium. Interestingly, de-biasing also increases the welfare of

the Rational Type whose priority scores belong to the 3rd and 4th quintiles by 0.368 and

0.217 of a standard deviation of the score, and decreases the welfare of those whose scores

belong to the highest quintile by 0.080 of a standard deviation. Intuitively, this happens

because, in the old equilibrium, there is a mismatch effect between the behavioral type with

a higher score and the rational counterpart with a lower priority score. De-biasing eliminates

this effect and benefits any rational type whose score is not among the highest.
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Effect of De-Biasing on Outcome Gap in Terms of Selectivity We know from

Section 4.3 that the most socioeconomically disadvantaged quartile ends up in less selec-

tive colleges. In the structural model, this gap is explained by other differences in college

preferences, or the behavioral biases. We examine how the gap would change under the

counterfactual scenario in which all students are acting optimally. As reported in Table

B3, Panel B, the gap shrinks by at least 83.15%, implying that, rather than heterogeneous

preferences, most of the gap is explained by the behavioral biases.

Alternative Mechanisms DAA without limits on the number of choices would remove

the advantage of the Rational Type, but students would not be able to express their prefer-

ence intensity through risk-taking (Abdulkadiroğlu et al., 2011). Panel C reports the welfare

effects of switching to unlimited DAA, which decreases the welfare of the Rational Type in

the 3rd, 4th, and 5th quintiles by 0.329, 0.725, and 0.045 s.d. of the score. It increases the

welfare of the DC Type in the 3rd and 4th quintile by 0.231 and 0.447 s.d. of the score,

but decreases the welfare of the DC in the 5th quintile by 0.155 s.d. of the score. Overall,

DAA without a limit is not welfare-enhancing for the majority of the students. An impor-

tant caveat is that such evaluation ignores the differential impact of mistaken beliefs across

mechanisms (Kapor et al., 2020).

An alternative is the Boston Mechanism, which intuitively makes bias less costly because

it weakens the Rational Type’s advantage of using backup choices as “insurance” to act

aggressively for their top choices. Our results suggest that the Boston mechanism leads to

a decrease in welfare for students of both types, although the decrease for the DC Type

is smaller than the decrease for the Rational Type. Together with the results from DAA

with an unlimited list, our analysis provides empirical support for Chen and Kesten (2017,

2019)’s theoretical finding that the Chinese parallel mechanism, as a middle ground between

the Boston and DAA mechanism, may be better than both in our context.

Inequality Figure 6 presents how de-biasing and mechanism switching affect students of

different socioeconomic status. Switching to an unconstrained Deferred Acceptance Algo-

rithm or a Boston mechanism decreases the average welfare of students of every socioeco-

nomic status. In contrast, de-biasing increases the welfare of all socioeconomic levels, where

the welfare increase for the most disadvantaged quartile is equivalent to 0.294 s.d. of the

score, and the welfare increase for the most advantaged quartile is equivalent to 0.221 s.d.

of the score.
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8 Discussion

Alternative Considerations Several factors that have been documented in the literature

may also affect students’ decision making. Appendix C.2 discusses, using the survey data,

that to what extent students’ subjective beliefs deviate from the estimated probability we

construct using administrative data, and how the elicited beliefs affect the results of struc-

tural estimation. The primary finding is that using subjective beliefs increase the estimated

share of the DC Type because the beliefs reflect higher degree of top-choice cautiousness.

Appendix E.3 discusses correlation in the event of admission across colleges and finds that

it does not affect the accuracy of estimated admission probability. Appendix E.4 discusses

to what extent consideration of major could affect decision making, and find that it has

minimal impact on risk taking behavior.

Psychological Mechanism The Model of Directed Cognition can naturally fit all the

empirical patterns that we highlight. In addition to the failure of backward induction and

contingent reasoning, the DC Model captures the idea that decision-makers tend to ignore

the “background” of a problem when making individual choices. This intuition is similar to

the theoretical models that describe how variation in choice attributes affects their salience

and in turn affects the decision weight placed on them (Bordalo et al., 2012; Kőszegi and

Szeidl, 2013; Bordalo et al., 2021). For example, if each spot of the rank-order list is viewed as

an attribute of the portfolio, decision-makers may underweight the colleges that are already

included when selecting individual colleges for other blank spots.

An alternative consideration is that the sequence in which a rank-order list is processed

implies that uncertainty is resolved in multiple stages, which is a compound lottery problem.

The established association between ambiguity aversion and failure of reducing compound

lottery (Halevy, 2007; Chew et al., 2017) suggests that the inability to cope with multistage

uncertainty could be caused by either ambiguity or complexity aversion. Regardless of its

welfare implications, the model of directed cognition can be viewed as the limit point of

the recursive utility specification in this literature. However, the documented framing effect

in the survey experiment suggests that this psychological mechanism cannot explain all the

suboptimal choices in our setting, because the uncertainty in later stages has been effectively

eliminated in the incentivized survey questions.

As our findings could be potentially generalized to other mechanisms and settings where

risky choices are interrelated, an important question for future research is to what extent the

aforementioned factors influence the descriptive power of the DC Model in other contexts.
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Implications for School Choice Systems A large literature documents that disadvan-

taged students select worse schools in the presence of school choice (Hastings and Weinstein,

2008; Hoxby and Avery, 2012; Walters, 2018). Our analysis suggests a novel channel through

which a specific cognitive bias exacerbates inequality in educational attainment. Contrary

to the convention wisdom, the documented behavioral biases affect not only equity, but also

efficiency. The results suggest that intervening against the biases under the current system

outperforms alternative popular mechanisms. This finding depends on the students’ prefer-

ence profiles. Caution needs to be exercised when applying this insight to other contexts.
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Figure 1: Admission Cutoffs Across Years

Note: This figure plots the admission cutoffs for all colleges that admit Ningxia students during 2014-2018,
for the discussion in Section 3.2. The admission cutoffs are converted to its 2018 rank-preserving
equivalents. Each dot represents the admission cutoffs of a specific college in two consecutive years. Top
left graph plots the cutoffs in 2018 against 2017. Similarly, top right graph plots the cutoffs in 2017 against
2016; bottom left graph plots the cutoffs in 2016 against 2015; bottom right graph plots the cutoffs in 2015
against 2014.
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Figure 2: Mean of Vacancy Probability and Share of Reversals by SES Groups

(a) Mean of Vacancy Probability

(b) Share of Competitive Reversals by Threshold X%

Note: This figure presents statistics for the most advantaged quartile (in blue) and the most disadvantaged
quartile (in red), respectively. The sample is restricted to those whose priority score is top 60%, for the
discussion in Section 4.3. Subfigure (a) plots the mean of vacancy probability (i.e. unconditional admission
probability). Subfigure (b) plots the share of students whose strategy exhibits at least one pair of
competitiveness reversals anywhere on her ROL, as a function of the threshold above which the reversal is
counted in the statistic. The statistic we use to classify reversal is R ≡ max{pi − pj |for any1 ≤ j < i ≤ 4} ,
only those whose R is above threshold X% will be counted. To maximize comparison, the mean from the
least advantaged quartile has been reweighted to account for differences in priority scores.40



Figure 3: Distribution of Response to Incentivized Survey Questions

Note: This figure displays a coarsened joint distribution of responses to Question Group 1 (ROL 1st
Choice) and Question Group 2 (Equivalent Lottery), for the discussion in Section 5.

Blue cells indicate that students’ responses are both classified as “not very cautious” in the “ROL
first-choice” problem and the equivalent lottery problem, as predicted by Rational Decision Rule.

Red cells indicate that students’ responses are very cautious in “ROL first-choice” problem but not
very cautious in the equivalent lottery problem as predicted by Directed Cognition (DC) Decision Rule.

Gray cells indicate that students’ responses are not very cautious in “ROL first-choice” problem but
very cautious in the equivalent lottery problem, which cannot be predicted by neither decision rule.
“ROL first-choice” question (vertical) corresponds to Question Group 1. In this question, students need to
choose from college X, whose admission probability is 50% and payoff of admission is 25 CNY, or college Y,
whose admission probability is 25% and payoff of admission is R CNY, where R = 30, 35, 40, 45, 50, 55,
60, respectively in the MPL, and put the college of their choice on the top of their list. If students are not
admitted to their first choices, they will be admitted to one of the bottom choices in this scenario, which
corresponds to the payoff of 20 CNY.
“Equivalent Lottery” question (horizontal) corresponds to Question Group 2. In this question, students
need to choose from lottery X, whose payoff is 25 CNY with 50% of chance, 20 CNY with 50% of chance,
or lottery Y, whose payoff is L CNY with 25% of chance, 20 CNY with 75% of chance, where L = 30, 35,
40, 45, 50, 55, 60, respectively. Note that “Equivalent Lottery Question” is mathematically equivalent to
the aforementioned “ROL first-choice Question”.
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Figure 4: Prediction: Position Movement in ROL as Priority Score Changes

(a) Individual Choice Pattern under Rational
Rule

(b) Individual Choice Pattern under DC Rule

(c) Estimated Average Direction of Movement

Note: This figure shows the prediction about how any single college move on the list as priority score
changes under Rational Decision Rule and DC Decision Rule respectively, as discussed in Section 6.1, and
6.3. Subfigure (a) presents an example where the college in question is put on the list under Rational
Decision Rule. Blue dots represent the position of the college given a level of priority score specified on
horizontal axis. Subfigure (b) presents an example where the college in question is put on the list under
DC Decision Rule. Red dots represent the position of the college given a level of priority score specified on
horizontal axis. Subfigure (c) shows the estimated mean, 40th percentile, 60th percentile, mean ± 0.5sd of
slope for each probability bin using the regression described in 6.3.
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Figure 5: Data & Model Prediction: One-Type Rational vs. Mixture Model

(a) Mean Admission Probability for Each Choice
(b) Share of Competitiveness Reversals

(c) Upward Movement Coefficient γ

Note: This figure compares the fit and data for the key moments in risk-taking strategies, as discussed in
detail in Section 7.4. The fit is generated by the structural model that excludes students of the bottom
40% to minimize the impact of the constraint of priority score on college choices in the year of 2015, 2017,
and 2018, where township level SES index can be obtained. Green dashed line is generated by the model
that excludes the DC Type, but with the same degree of flexibility in preferences. Orange line is generated
by our preferred model, the mixture model that allows for both Rational Type and the DC Type.
Subfigure (a) plots the mean of unconditional admission probability for the first, second, third and fourth
choices. Subfigure (b) plots the share of competitiveness reversals where the unconditional probability of
the higher-ranked exceeds that of lower-ranked by more than X%. Subfigure (c) compares the estimated
upward movement index, that is, the γ we obtain by running regression 5, from Figure 4c and Table B5.
Table B12, B15, B18 report the fit of one-type rational model for all moments by the quintile of priority
scores.Table B13, B16, B19 report the fit of one-type rational model for all moments by the quintile of
priority scores.
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Figure 6: Welfare Impact of De-Biasing and Alternative Mechanisms by SES Quartile

Note: This figure presents the mean of welfare impact of de-biasing, as well as switching to alternative
mechanisms (Deferred Acceptance Algorithm without list constraints and Boston Mechanism with 4
choices), evaluated separately for students in each quartile of socioeconomic status index. The first quartile
is the least advantaged. The fourth quartile is the most advantaged. The discussion of this figure is
detailed in Section 7.5.
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Table 1: Cautiousness of First and Fourth Choices:
Most Advantaged Quartile vs. Most Disadvantaged Quartile

(1) (2) (3)
Unconditional Admission Probability First Fourth Fourth-First

Panel A: Summary Statistics of Admission Probability
Mean 45.96% 90.90% 44.94%
25th Percentile 6.93% 95.52% 9.04%
50th Percentile 41.32% 99.79% 47.09%
75th Percentile 84.30% 100.00% 83.46%

Panel B: Disadv-Adv Gap - Aggregate Estimate
Most Disadvantaged Quartile 7.11% -2.02% -9.13%

(0.67%) (0.39%) (0.75%)

Benchmark Group Most Advantaged Quartile
Predicted at Mean of Control: Most Advantaged 43.47% 91.95% 48.48%

(0.41%) (0.24%) (0.46%)

4th-Order Polynomial of Priority Score Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Track (Science or Humanity) Fixed Effects Yes Yes Yes

Panel C: Predicted Mean of Disadv-Adv Gap - by Quantile of Priority Score
E[Adv-Disadv|Priority Score 40%] 6.59% -1.36% -7.95%

(0.92%) (0.53%) (1.03%)
E[Adv-Disadv|Priority Score 60%] 8.22% -1.91% -10.14%

(0.82%) (0.48%) (0.92%)
E[Adv-Disadv|Priority Score 80%] 10.47% -2.09% -12.56%

(1.59%) (0.92%) (1.79%)
E[Adv-Disadv|Priority Score 99%] 6.13% -1.64% -7.77%

(5.21%) (3.01%) (5.85%)

Note: This table reports reduced-form results from administrative data that analyzes the unconditional
probability of students’ first choices and fourth choices among students from the most disadvantaged
quartile and the most advantaged quartile, as described in Section 4. Column 1 reports statistics related to
the unconditional probability of the first choices. Column 2 reports statistics related to the unconditional
probability of the fourth choices. Column 3 reports statistics related to the fourth-first choice gap, in terms
of unconditional probability. Panel A reports the summary statistics of aforementioned variables. Statistics
in Panel B and C are generated by a fixed effect regression that regresses outcome variables on the
interaction of an indicator whether students belong to the most disadvantaged, and a fourth-order
polynomial of priority scores. Panel B reports main effect of belonging to the most disadvantaged. Panel C
examines the heterogeneity of adv-disadv gap by reporting the predicted mean of gap conditional on
priority score quantile.
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Table 2: Competitiveness Reversals:
Most Advantaged Quartile vs. Most Disadvantaged Quartile

(1) (2) (3) (4)
Threshold of Reversal X%: Probability of the
Higher-Ranked Exceeds That of the Lower-
Ranked by More Than X%

0% 25% 50% 75%

Panel A: Summary Statistics of Share of Risk Taking Reversal
Mean 61.41% 23.74% 13.01% 6.70%

Panel B: Disadv-Adv Gap - Aggregate Estimate
Most Disadvantaged Quartile 5.63% 6.79% 5.24% 3.96%

(0.89%) (0.77%) (0.61%) (0.45%)

Benchmark Group Most Advantaged Quartile
Predicted Share at Control Mean 59.26% 20.77% 10.58% 4.71%

(0.55%) (0.47%) (0.37%) (0.28%)
List of Controls
4th-Order Polynomial of Priority Score Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Track (Science or Humanity) Fixed Effects Yes Yes Yes Yes

Panel C: Predicted Mean of Disadv-Adv Gap - by Quantile of Priority Score
E[Adv-Disadv|Priority Score 40%] 6.82% 7.66% 6.47% 5.93%

(1.22%) (1.05%) (0.83%) (0.62%)
E[Adv-Disadv|Priority Score 60%] 5.32% 5.94% 4.41% 3.13%

(1.09%) (0.94%) (0.75%) (0.56%)
E[Adv-Disadv|Priority Score 80%] 4.51% 3.91% 2.17% 0.38%

(2.12%) (1.83%) (1.44%) (1.08%)
E[Adv-Disadv|Priority Score 99%] 8.80% 8.30% 4.78% 0.72%

(6.91%) (5.96%) (4.72%) (3.53%)

Note: This table reports reduced-form results from administrative data that analyzes the risk-taking
reversal, namely, choosing rank a safer college higher, among students from the most disadvantaged
quartile and the most advantaged quartile, as described in Section 4. We classify a pair of choices as
risk-taking reversal if the gap in terms of admission probability exceeds X%, where X takes the value of 0,
25, 50, 75 in Columns 1, 2, 3, 4, respectively. Panel A reports the summary statistics of share of reversals.
Statistics from Panel B and C are generated by a fixed effect regression that regresses outcome variables on
the interaction of an indicator whether students belong to the most disadvantaged, and a fourth-order
polynomial of priority scores. Panel B reports the main effect of belonging to the most disadvantaged.
Panel C examines the heterogeneity of adv-disadv gap by reporting the predicted mean of gap conditional
on priority score quantile.
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Table 3: Testing Framing Effect - Incentivized Survey Responses

Panel A: Framing Effect and Socio-Economic Status
(1) (2) (3)

Prob(Red Block)
Very Cautious in ROL But Not Very Cautious in Lottery

SES Index Normalized -4.8% -4.9% -4.3%
(1.3%) (1.6%) (1.4%)

Control: Priority Score Yes Yes Yes
Control: Demographic Variables No Yes Yes
Control: College Preferences No No Yes

Panel B: Estimated Share of Type from Survey Responses
Share of Directed Cognition Type: Mean 0.0% 50.4% 50.4%

- (1.7%) (1.7%)

Marginal Effect of Normalized SES 0.0% -5.3% -5.5%
- (1.8%) (1.8%)

Share of Sincere Type 0.0% 0.0% 0.8%
- - (0.6%)

Power Utility Curvature ρ 0.510 0.760 0.758
(0.014) (0.011) (0.011)

Number of Parameters 6 9 10
Log Likelihood -9100.574 -8781.778 -8780.909
Number of Observations 1412 1412 1412
Bayesian Information Criterion 18244.66 17628.83 17634.35

Panel C: Framing Effect and Elicited College Application Behavior
Not More Cautious More Cautious
in ROL than Lottery in ROL than Lottery Difference

(Red Block) (Blue / Gray Block)
List the 1st Choice If Only One Spot 27.6% 50.8% 23.2%

(1.4%) (2.4%) (2.7%)

List Top Two Choices If Only Two Spots 27.3% 34.5% 7.2%
(1.4%) (2.3%) (2.6%)

Subject Probability of Meeting the 48.0% 56.6% 8.5%
Cutoff of the 1st Choice (0.9%) (1.5%) (1.7%)

Subject Probability of Meeting the 72.5% 70.6% -1.8%
Cutoff of the 4th Choice (1.0%) (1.6%) (1.9%)

Share of Reversal: Subjective Probability 18.4% 23.2% 4.8%
Higher Ranked - Lower Ranked > 25% (1.2%) (2.0%) (2.3%)

Note: This table reports empirical analysis from incentivized survey response, as described in Section 5. Panel A analyzes to
what extent the framing effect, that is, being very cautious in college choice problem than its lottery equivalent, is correlated
with students’ socioeconomic status and their priority scores, controlling for other variables elicited in the survey. Panel B
jointly estimates students’ propensity of being a Directed-Cognition Type and their CRRA risk preferences using different
specifications. Column (1) excludes any behavioral type. Column (2) estimates a mixture model of the DC and the rational
type. Column (3) estimates a model that additionally allows for sincere type. Panel C summarizes whether the average
behavior in reported college choices among students who exhibit framing effect differ from those who do not.
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Table 4: Structural Estimation of Mixture Model using Administrative Data

Panel A: Estimation Results - Rational One-Type vs. Mixture Model
(1) (2) (3) (4) (5) (6)

Sample (Quantile of Priority Score) 40%-60% 60%-80% 80%-100%
Model Rational Mixture Rational Mixture Rational Mixture

Estimated Share of DC Type 53.1% 45.1% 55.1%
(0.61%) (0.54%) (0.55%)

Marginal Effect of SES -3.71% -3.68% -6.02%
(0.57%) (0.56%) (0.55%)

Mean Curvature: Rational Type -0.044 -0.375 0.413 -0.365 0.307 -0.336
(0.007) (0.027) (0.022) (0.024) (0.014) (0.021)

Mean Curvature: DC Type -0.486 -0.459 -0.478
(0.055) (0.033) (0.021)

Number of Moments 120 120 120 120 120 120
Number of Parameters 20 29 20 29 20 29
Distance 7699.344 4462.128 7008.675 2166.753 4737.862 2213.298
Decrease (Improvement) of Distance in Percentage 42.0% 69.1% 53.3%
MMSC-BIC (Andrews&Lu, 2001) 6864.396 3702.324 6174.988 1408.098 3903.911 1454.404

Panel B: Out-of-Sample Predictions - Rational One-Type vs. Mixture Model
Sample (Quantile of Priority Score) 40%-60% 60%-80% 80%-100%
Model Rational Mixture Rational Mixture Rational Mixture

Distance 5760.837 4903.896 5477.374 3102.324 3947.603 2083.348
Decrease (Improvement) of Distance in Percentage 14.9% 43.4% 47.2%

Key Moments
Data: Mean Probability of 1st Choices 44.1% 45.6% 63.6%
Prediction: Mean Probability of 1st Choices 29.0% 58.4% 32.3% 55.5% 38.5% 67.3%

Data: Mean Probability of 4th Choices 85.8% 87.8% 95.0%
Prediction: Mean Probability of 4th Choices 99.8% 94.3% 99.3% 92.0% 99.4% 97.4%

Data: Share of Reversals 61.3% 58.0% 51.9%
Prediction: Share of Reversals 33.0% 52.3% 37.1% 62.2% 36.1% 56.7%

Panel C: Welfare Evaluation Using Mixture Model (Unit: Standard Deviation of Priority Score)
Sample (Quantile of Priority Score) 40%-60% 60%-80% 80%-100%
Type Rational DC Rational DC Rational DC

Debiasing 0.368 0.495 0.217 0.253 -0.080 0.082
Deferred Acceptance with Unrestricted List -0.329 0.231 -0.725 0.447 -0.045 -0.155
Boston Mechanism with 4 Choices -0.147 -0.066 -0.074 -0.021 -0.152 -0.053

Note: This table reports the results of structural analysis as described in Sections 7.4 and 7.5, for the 40% ∼ 60% (column 1,2),
60% ∼ 80% (column 3,4), and 80% ∼ 100% (column 5,6) subsample. Columns 2,4,6 report estimation of mixture model where
DC and Rational Type coexist. Columns 1,3,5 report estimation results of a rational model with flexible structure in college
preferences. Standard errors are in parentheses. MMSC-BIC is a model and moments selection criteria for GMM developed by
Andrews and Lu (2001). It is analogous to Bayesian Information Criterion in the context of maximum likelihood estimation.

48



A Supplementary Figures

Figure A1: Timeline of College Admission Process

Note: This figure presents the timeline of college admission process, as detailed in Section 2. Note that the
timeline remains unchanged until 2020, when the college entrance exam (CEE) was postponed by exactly
one month due to COVID-19. As a result, all the admission procedures thereafter were postponed by
exactly one month as well. As shown in the 2020 timeline, the survey was conducted right after application
deadline, but before students were informed of their admission outcomes.

49



Figure A2: Distribution of Realized Cutoff-Predicted Mean Differences

(a) Distribution of Differences: All Colleges

(b) Distribution of Differences by College Competitiveness

Note: This figure plots the distribution of distance between realized cutoffs and predicted mean as defined
in Section 3.2. Subfigure (a) plots the distribution of differences between admission cutoffs and predicted
mean among all colleges. Subfigure (b) plots the distribution of differences by college competitiveness,
where the dashed lines in the top left, top right, bottom left, and bottom right graph are the empirical
distribution for the least competitive quarter of colleges, second from the least competitive quarter, second
from the most competitive quarter, and the most competitive quarter of colleges, respectively. The solid
lines in subfigure (b) are fitted distributions using the median estimate of the standard deviation of
cutoff-mean difference for corresponding quarter of colleges. Both subfigures omit outliers which is more
than 30 points away from the predicted mean.
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Figure A3: Mean of Admission Probability Conditional on Priority Score

(a) Full Sample

(b) Advantaged cs. Disadvantaged

Note: This figure plots the mean of admission probability conditional on the quantile of priority score for
student applicants’ first choices, second choices, third choices and fourth choices, respectively. Subfigure (a)
plots the statistics for the entire sample. Subfigure (b) plots the statistics for the advantaged students (the
most advantaged quartile in terms of township-level education attainment) in blue, and for the other
students in red. This graph is helpful for the discussion in Section 4.
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Figure A4: Average Years of Education in Administrative Data (Township Level)

Note: This figure plots the cumulative distribution of probability of meeting cutoffs for students’ first (in red), second (in
yellow), third (in green) and fourth (in blue) choices, respectively, during 2014-2018. The figure demonstrates sizable
heterogeneity in terms of educational attainment across different townships in Ningxia (25th percentile: 7.80 years; median:
8.73 years; 75th percentile: 9.88 years).
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Figure A5: Example of Change in Priority Score Leading to Change in Ratio of Assignment
Probability

Note: This figure plots an example of the cumulative distributions of the cutoffs for two colleges, A1 and
B1. Both distributions are normal distribution with standard deviation of 5, and the mean being 600 and
605 respectively. As shown in the upper horizontal axis, changes in priority scores lead to change in the
ratio of assignment probability of A1 to B1. This graph is for the discussion in Section 7.1.
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Figure A6: Impact of Subject Difficulty Variation on Admission Probability

(a) Difficulty of Subjects Varies Across Years

(b) Magnitude of Shock to Admission Probability is Sizable

Note: This figure explains the source of exogenous variation in admission probability. Subfigure (a)
presents the standard deviation of raw exam scores as share of subject total scores for each subject during
2014-2018. Subfigure (b) is a histogram of the estimated distribution of shocks, rescaled in terms of the
predicted standard deviation of cutoff of students’ first choices. This graph is helpful for the discussion in
Section 6.2.
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Figure A7: Competitiveness of Admitting College: by CEE Score Quantile

Note: This figure plots the distribution of colleges that admit students during 2014-2018. We split the
entire sample of STEM applicants into five groups according to their CEE Score, with the first quintile
being the group with lowest CEE Score and the fifth being the highest. This graph is helpful for the
discussion in Section 7.
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Figure A8: Data & Fit of Mixture Model: Advantaged vs. Disadvantaged

(a) Data vs. Fit: Mean Admission Probability for Each Choice

(b) Data vs. Fit: Share of Competitiveness Reversals

Note: This figure compares the fit and data for the key moments in risk-taking strategies, for the most
advantaged quartile (4th quartile) and the least advantaged quartile (1st quartile) respectively, as discussed
in detail in Section 7.4. The fit is generated by the structural model that excludes students of the bottom
40% to minimize the impact of the constraint of priority score on college choices in the year of 2015, 2017,
and 2018, where township level SES index can be obtained. To maximize comparability across different
SES groups, data have been reweighted to account for differences in priority score. Solid lines represent
moments from data. Dashed lines represents values simulated by the estimated parameters from the
mixture model. Blue lines represent the most advantaged quartile. Red lines represent the least
advantaged quartile. Subfigure (a) plots the mean of unconditional admission probability for the first,
second, third and fourth choices. Subfigure (b) plots the share of competitiveness reversals with different
levels of threshold X%.
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B Supplementary Tables

Table B1: Examples of Admission Rules

(1) (2) (3) (4) (5) (6) (7)

Ex. Number Priority Score
Admission Cutoffs

Admission OutcomeA B C D

1 600 595 590 587 580 A
2 580 581 572 583 550 B
3 577 595 590 587 580 None
4 580 595 590 587 580 D

Note: This table presents four examples in which students with different priority scores applying for
different sets of colleges in their ROLs. The serial number of examples is in Column (1). Each example is
associated with a hypothetical student. The priority scores of the students are recorded in Column (2).
Columns (3)-(6) present the admission cutoffs of the colleges that the students put in their ROLs. Column
(7) presents the admission outcome of each hypothetical student as a result of their scores and ROLs. This
table is helpful for the discussion in Section 2.2.
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Table B2: Validity of Estimates of Unconditional Probability

(1) (2) (3) (4)
Admitted to First Admitted to Second

Estimated Uncond. Prob. to First 0.9997 0.9954
(0.0043) (0.0084)

Estimated Uncond. Prob. to Second 0.9805 1.0033
(0.0060) (0.0110)

Constant 0.0056 0.0019 0.0183 -0.0002
(0.0024) (0.0041) (0.0037) (0.0062)

Subsample (Science/Humanity) Science Humanity Science Humanity
Empirical Share of Admitted .4161 .3269 .4903 .4341
Predicted Share of Admitted .3994 .2998 .4703 .4003

Note: This table reports the empirical exercise that tests the validity of probability estimates that we
construct in Section 3.2. Columns 1 and 2 present the results of the regression where we regress the
outcome of being admitted to the first choices on the estimated probability of meeting the cutoff of first
choices, using the full sample of science-track and humanity-track students, respectively. Columns 3 and 4
present the results of the regression where we regress the outcome of being admitted to the second choices
on the estimated probability of meeting the cutoff of second choices using the subsample of students who
are not admitted to their first choices, for science-track and humanity track, respectively. This table is
helpful for the discussion in 3.2.
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Table B3: Admission Outcome and Score-Cutoff Gap

Panel A: Regression Analysis Using Administrative Data

(1) (2) (3)
Selectivity of Admission Outcome (Normalized)

Most Disadvantaged Quartile -0.1288*** -0.1061*** -0.0962***
(0.0082) (0.0126) (0.0209)

Benchmark Group Most Advantaged Quartile

CEE Score Yes Yes Yes
Demographic Variables No Yes Yes
County Fixed Effects No No Yes

Panel B: Regression Analysis Using Simulated Data after De-Biasing

(1) (2) (3)
Selectivity of Admission Outcome (Normalized)

Most Disadvantaged Quartile -0.0217* -0.0106 0.0001
(0.0125) (0.0142) (0.0162)

Benchmark Group Most Advantaged Quartile

Decrease in Outcome Gap% 83.15% 90.01% 100%
CEE Score Yes Yes Yes
Demographic Variables No Yes Yes
County Fixed Effects No No Yes

Note: Panel A compares the selectivity of admitting college, as measured by cutoffs during 2014-2018
(normalized), for the most advantaged quartile to the least advantaged quartiles, with different sets of
controls in different columns. Only the most advantaged and most disadvantaged quartile are included in
the regression. Students’ CEE scores have been controlled in all columns. Demographic variables are added
as controls for Columns 2,3. County Fixed Effects are controlled in Columns 3. Panel B conducts exactly
the same analysis using simulated data that are generated by the estimated college preferences in a
counterfactual scenario where all students have learned how to apply optimally. Standard errors are in
parentheses. * significant at 10%, ** significant at 5%, *** significant at 1%. This table is helpful for the
discussion in Section 4.3.
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Table B4: Design of Incentivized Questions in Survey

Panel A1: ROL for Question Group 1 Panel C1: ROL for Question Group 3
ROL # Payoffs Prob(Meeting Cutoffs) ROL # Payoffs Prob(Meeting Cutoffs)
1st ? ? 1st ? ?
2nd 20 CNY 100% 2nd 5 CNY 100%
3rd 20 CNY 100% 3rd 5 CNY 100%
4th 20 CNY 100% 4th 5 CNY 100%

Panel A2: MPL for Question Group 1 Panel C2: MPL for Question Group 3
Question # College X College Y College X College Y

(1) 25 CNY, 50% 30 CNY, 25% 25 CNY, 50% 30 CNY, 25%
(2) 25 CNY, 50% 35 CNY, 25% 25 CNY, 50% 35 CNY, 25%
(3) 25 CNY, 50% 40 CNY, 25% 25 CNY, 50% 40 CNY, 25%
(4) 25 CNY, 50% 45 CNY, 25% 25 CNY, 50% 45 CNY, 25%
(5) 25 CNY, 50% 50 CNY, 25% 25 CNY, 50% 50 CNY, 25%
(6) 25 CNY, 50% 55 CNY, 25% 25 CNY, 50% 55 CNY, 25%
(7) 25 CNY, 50% 60 CNY, 25% 25 CNY, 50% 60 CNY, 25%

Panel B: MPL for Question Series 2
Question # Choice X (Payoff, Prob) Choice Y (Payoff, Prob)

(1) (25 CNY, 50%; 20 CNY, 50%) (30 CNY, 25%; 20 CNY, 75%)
(2) (25 CNY, 50%; 20 CNY, 50%) (35 CNY, 25%; 20 CNY, 75%)
(3) (25 CNY, 50%; 20 CNY, 50%) (40 CNY, 25%; 20 CNY, 75%)
(4) (25 CNY, 50%; 20 CNY, 50%) (45 CNY, 25%; 20 CNY, 75%)
(5) (25 CNY, 50%; 20 CNY, 50%) (50 CNY, 25%; 20 CNY, 75%)
(6) (25 CNY, 50%; 20 CNY, 50%) (55 CNY, 25%; 20 CNY, 75%)
(7) (25 CNY, 50%; 20 CNY, 50%) (60 CNY, 25%; 20 CNY, 75%)

Note: This table presents the content of the three groups of incentivized MPL questions. Panels A1 and C1
present the ROL for Question Groups 1 and 3, respectively. Names of colleges for the second, third, and
fourth spot are replaced with safe colleges that students are familiar with. Panels A2 and C2 present the
MPL for Question Groups 1 and 3, respectively. In both question groups, students need to select either
College X or College Y from each row, and the selected college will be put at the first spot in the
corresponding ROL. Panel B presents the MPL for Question Group 2. Similarly, students need to choose
one from Lottery X and Y in each row. This table is helpful for the discussion in Section 5.2.
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Table B5: Testing Upward Movement of College Positions on ROLs

Predicted Probability Estimated Estimated Standard

# Obs # Clusterof College of Choice Mean Movement Deviation of Movement
if No Score Shock µγ σγ

0%∼10%
0.019 0.143

4769 324(0.008) (0.009)

10%∼20%
0.027 0.193

2342 235
(0.013) (0.014)

20%∼30%
-0.023 0.211

2173 234
(0.014) (0.015)

30%∼40%
-0.033 0.222

2087 239
(0.014) (0.016)

40%∼50%
-0.030 0.231

2263 248
(0.014) (0.016)

50%∼60%
-0.006 0.208

2533 274
(0.013) (0.014)

60%∼70%
-0.037 0.212

3156 313
(0.012) (0.012)

70%∼80%
-0.026 0.197

4116 352
(0.011) (0.013)

80%∼90%
-0.023 0.168

5772 435
(0.008) (0.009)

90%∼100%
-0.021 0.103

14952 632(0.004) (0.007)

Note: This table reports the estimated mean (µγ) and standard deviation (σγ) of the estimated slope of
score shock, γ̂(j,SES). The table corresponds to the empirical analysis in Section 6.3. We split the sample
into ten bins according to whether the predicted academic ability, converted to admission probability in the
absence of score shock falls into the category of 0.1% ∼ 10%, 10% ∼ 20%, 20% ∼ 30%, ... , 80% ∼ 90%,
90% sim 99.9%, and exclude samples where the probability is lower than 0.1% or higher than 99.9%, so
that the score shock cannot generate substantial variation in admission probabilities. In terms of
socio-economic status, we split students into four groups as we do previous sections. We run the
specification in 5 for each college*SES quarter*probability bin separately, excluding the cell where there
are less than 5 observations. The outcome variable is the position of a college on students’ lists, which
takes the value of 4 if listed as the first choice, 3 if listed as the second choice, 2 if listed as the third choice,
4 if listed as the fourth choice. For cells belonging to the same probability bin, we report the point
estimate of the mean of the estimated slope for the score shock γ̂(j,SES) and its standard error (Column 2),
estimated standard deviation and of the estimated slope for the score shock γ̂(j,SES) and its standard error
(Column 3), number of college-student pair for each subsample (Column 4), number of clusters (coefficient
of the score shock allowed vary across clusters) within each subsample (Column 5), where the score shock
is defined as in Section 6.2. Point estimates for mean, standard deviation and their standard errors for each
probability bin are calculated using bootstrap, with the replacement draw at the level of cells, weighted by
the size of cell.
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Table B6: Subjective Beliefs

(1) (2) (3) (4)
Belief-Est. Prob. | Belief-Est. Prob.|

SES Index (Normalized) 1.00% 1.85% 1.08% 1.12%
(0.51%) (0.64%) (0.36%) (0.45%)

Mean 12.1% 31.0%
Priority Score Yes Yes Yes Yes
Demographic Variables No Yes No Yes
College Preferences No Yes No Yes

Note: This table presents analysis of student applicants’ subjective beliefs about the unconditional
admission probability for relevant colleges. All columns present regressions that examine whether
subjective beliefs differ systematically from estimated admission probability, and whether such difference is
correlated with SES Index. The outcome variable in Columns 1 and 2 is the difference between subjective
beliefs and estimated admission probability. Columns 3 and 4 are the absolute difference between
subjective beliefs and estimated admission probability. The mean of bias and absolute biases have been
calculated below the coefficient estimates. Besides SES Index, the only additional covariate in Columns 1
and 3 is the fourth-order polynomial of priority score, whereas in Columns 2 and 4 we additionally control
for demographics and stated college preferences. This table is helpful for the discussion in Section C.2.
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Table B7: Full Set of Parameter Estimates for Benchmark Model

(1) (2) (3) (4) (5) (6)
Sample (Quantile of Priority Score) 40%-60% 60%-80% 80%-100%
Model Rational Mixture Rational Mixture Rational Mixture

γ0 0.1252 -0.1973 0.208
[0.0105] [0.011] [0.0148]

γ1 -0.1498 -0.1493 -0.247
[0.0105] [0.0121] [0.0159]

ORN 201.2587 187.4907 111.921 176.7342 195.5955 8.7853
[11.9669] [33.1842] [8.5226] [32.3841] [16.8046] [2.2729]

ODC 78.7562 -34.3799 44.9209
[29.3449] [1.9681] [78.0733]

µRN
C -0.0435 -0.375 0.4131 -0.3652 0.3066 -0.3359

[0.0066] [0.0355] [0.0216] [0.0241] [0.014] [0.0266]

νRN
C -0.0776 0.0284 -0.1018 -0.0357 -0.1067 0.0066

[0.0053] [0.0095] [0.0107] [0.0105] [0.0092] [0.0086]

ln(σRN
C ) -4.1131 -1.062 -0.5165 -1.992 -4.3937 -4.9764

[0.4797] [0.0968] [0.039] [0.1842] [0.7947] [2.121]

µDC
C -0.4856 -0.4591 -0.4782

[0.0488] [0.0268] [0.024]

νDC
C 0.3762 -0.0812 -0.0187

[0.0505] [0.0112] [0.0088]

ln(σDC
C ) 0.448 -2.0757 -3.3633

[0.0526] [0.2075] [0.5757]

µRN
d2 -6.8873 -9.992 -4.3441 0.1874 -3.6878 -4.9847

[0.2233] [0.5761] [0.1344] [0.1141] [0.0849] [0.4778]

νRN
d2 2.2877 -0.5175 -0.0243 0.1652 1.9706 1.1632

[0.0969] [0.2054] [0.008] [0.0751] [0.0751] [0.1969]

ln(σRN
d2 ) 1.9632 0.6009 0.2952 -0.8687 -2.4492 1.5638

[0.0301] [0.2898] [0.0362] [0.5457] [0.5543] [0.1205]

µDC
d2 -0.8002 1.0772 2.0291

[0.1989] [0.0987] [0.1602]

νDC
d2 1.3624 1.0953 0.9078

[0.2314] [0.12] [0.1419]

ln(σDC
d2 ) 1.953 1.5628 1.3889

[0.0981] [0.0886] [0.1126]
ln(σϵ) -0.1207 2.6702 -0.9946 2.4079 -0.9616 -0.8188

[0.0255] [0.0821] [0.1145] [0.0821] [0.0898] [0.5159]
µd1 19.2221 11.789 19.7298 -6.0303 19.2848 -0.3039

[0.8053] [0.9965] [0.6462] [0.4852] [0.4567] [0.1945]

µX,STEM 2.5861 0.2433 -1.0096 0.9482 -3.2708 -0.6504
[0.1941] [0.1266] [0.2548] [0.3918] [0.8692] [0.2704]

µX,FIN -2.5268 -1.4682 -0.8048 0.3164 -17.6289 -1.6289
[0.578] [0.9938] [0.1611] [0.3252] [2.0334] [0.6835]

µX,MED -1.2038 2.9692 -1.9315 -1.2749 -11.0285 -19.0556
[0.2107] [0.7749] [0.3601] [0.4728] [2.1469] [3.4944]

νd1 2.7649 0.9637 0.8853 1.5536 1.3512 2.8387
[0.0326] [0.263] [0.1257] [0.1478] [0.0678] [0.0951]

νX,STEM 1.5886 2.9866 2.9986 2.9974 2.8672 1.9145
[0.1374] [0.147] [0.1814] [0.1647] [0.1904] [0.1866]

νX,FIN 2.3696 2.8947 0.3958 2.0263 2.8453 2.4398
[0.0645] [0.1176] [0.1496] [0.1408] [0.1074] [0.1169]

νX,MED 1.6335 -1.4377 1.4208 0.1856 2.2924 2.8106
[0.0656] [1.6394] [0.1203] [0.3431] [0.1711] [0.2065]

ln(σd1) -3.1846 9.1148 2.7593 1.4381 -9.4213 1.1769
[0.3308] [0.9704] [0.0745] [0.3302] [0.407] [0.4923]

ln(σX,STEM ) 0.8442 2.7324 1.3985 0.9126 -1.5138 -1.478
[0.1108] [0.3584] [0.2833] [0.3609] [0.2493] [0.3231]

ln(σX,FIN ) 1.4157 1.5411 -0.1749 -1.1974 0.0788 -0.8185
[0.2093] [0.7664] [0.0362] [0.329] [0.0437] [0.4208]

ln(σX,MED) -1.4415 -1.0368 -0.8789 -3.426 -2.1369 -6.5154
[0.164] [0.5986] [0.1118] [0.5875] [0.3572] [1.4997]

Note: This table presents the full set of parameter estimates for the benchmark model set up in Section 7.2 and detailed in Appendix D. Each
column corresponds to the column with the same column number in Table 4, Panel A. Column 1 and 2 report the results of estimation that cover
STEM students whose score is between 40% and 60% of the population. Column 3 and 4 report the results of estimation that cover STEM
students whose score is between 60% and 80% of the population. Column 5 and 6 report the results of estimation that cover STEM students
whose score is between 80% and 100% of the population. Odd columns report the results of the one-type rational model. Even columns report
the results of the mixture model.
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Table B8: Alternative Specifications of Structural Estimation

Panel A: Alternative Specifications - Less Flexible Preferences
(1) (2) (3) (4) (5) (6)

Sample (Quantile of Priority Score) 40%-60% 60%-80% 80%-100%
Rational Mixture Rational Mixture Rational Mixture

Estimated Share of DC Type 49.3% 47.8% 54.0%
(0.25%) (0.23%) (0.30%)

Marginal Effect of SES 0.99% -2.31% -5.03%
(0.33%) (0.26%) (0.31%)

Mean Curvature: Rational Type -0.296 -0.312 -0.133 -0.500 0.259 -0.500
(0.015) (0.019) (0.011) (0.021) (0.013) (0.017)

Number of Moments 120 120 120 120 120 120
Number of Parameters 8 11 8 11 8 11
Distance 11647.42 4586.36 9181.853 4171.124 7247.197 3102.797
Decrease of Distance in Percentage 60.6% 54.6% 57.2%
MMSC-BIC (Andrew&Lu, 2001) 10712.27 3676.267 8246.711 3261.031 6312.054 2192.703

Panel B: Alternative Specifications - Heterogeneous Beliefs
Sample (Quantile of Priority Score) 40%-60% 60%-80% 80%-100%

Rational Mixture Rational Mixture Rational Mixture

Estimated Share of DC Type 92.3% 96.2% 97.8%
(0.51%) (0.28%) (0.26%)

Marginal Effect of SES 6.45% -1.00% -0.97%
(0.48%) (0.33%) (0.40%)

Mean Curvature: Rational Type -0.318 0.125 -0.100 4.529 0.090 10.445
(0.016) (0.045) (0.011) (1.171) (0.005) (9.113)

Mean Curvature: DC Type -0.494 -0.478 -0.431
(0.022) (0.017) (0.011)

Number of Moments 120 120 120 120 120 120
Number of Parameters 20 29 20 29 20 29
Distance 10026.09 4586.656 30492.2 4331.319 54968.45 3360.928
Decrease of Distance in Percentage 54.3% 85.8% 93.9%
MMSC-BIC (Andrew&Lu, 2001) 9191.145 3826.853 29657.25 3571.516 54133.5 2601.125

Note: This table reports the results of structural analysis as described in Section 7.4 and C.2, for the
40% ∼ 60% (column 1,2), 60% ∼ 80% (column 3,4), and 80% ∼ 100% (column 5,6) subsample using
alternative specifications. Panel A reports the estimation results where the model is the same as the
single-type/mixture model in Table 4 except that only preferences over competitiveness and distance is
taken into account, and is homogeneous across types. Panel B reports the estimation results where the
parameters are the same as in Table 4 but we additionally introduce perturbation in beliefs with the
parameters of the perturbation distribution calibrated using data from the online survey.
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Table B9: Full Set of Parameter Estimates for Model with Subjective Beliefs

(1) (2) (3) (4) (5) (6)
Sample (Quantile of Priority Score) 40%-60% 60%-80% 80%-100%
Model Rational Mixture Rational Mixture Rational Mixture

γ0 2.8421 3.2691 3.8864
[0.0968] [0.0704] [0.0962]

γ1 0.9663 -0.2743 -0.4509
[0.0692] [0.0798] [0.144]

ORN 47.6584 107.0377 186.5335 10.6943 180.4882 137.3104
[1.21] [43.6744] [37.5617] [8.8221] [18.1934] [117.3933]

ODC 157.7041 190.9884 183.2862
[13.5568] [26.0062] [10.4437]

µRN
C -0.318 0.125 -0.0999 4.5286 0.0903 10.4447

[0.0157] [0.0452] [0.0105] [1.1712] [0.0051] [9.1129]

νRN
C -0.3331 0.5939 0.0333 -2.0243 -0.0811 -2.6561

[0.0165] [0.0534] [0.0023] [0.7408] [0.0032] [5.2059]

ln(σRN
C ) 0.5627 -1.4185 -4.9141 -2.9601 -4.5224 0.969

[0.0189] [0.2319] [0.4723] [3.0393] [0.2442] [1.7258]

µDC
C -0.4938 -0.4782 -0.4313

[0.0217] [0.0173] [0.0113]

νDC
C 0.1451 0.0125 0.0859

[0.0091] [0.0048] [0.0055]

ln(σDC
C ) -1.4356 -1.7559 -2.4135

[0.0855] [0.0767] [0.1239]

µRN
d2 -7.5468 -9.9297 -3.735 -2.4629 0.3301 -9.605

[0.1596] [1.2335] [0.1393] [0.5696] [0.0176] [3.4907]

νRN
d2 3.5104 9.9625 -0.0764 0.4132 2.8769 -7.116

[0.0665] [2.1119] [0.0202] [0.2359] [0.0509] [5.0562]

ln(σRN
d2 ) 1.5154 1.4246 -1.7818 -0.8556 -0.1169 -3.3158

[0.0456] [0.3211] [0.3147] [0.9039] [0.0103] [8.6852]

µDC
d2 -3.2083 -2.1032 -1.5258

[0.144] [0.117] [0.0829]

νDC
d2 -0.3515 1.0558 -2.7604

[0.1002] [0.1114] [0.1335]

ln(σDC
d2 ) 1.8952 1.9454 1.8639

[0.0427] [0.0518] [0.0384]
ln(σϵ) 2.9464 -0.5798 1.8222 -0.0608 1.4472 -0.6756

[0.0307] [0.2055] [0.0397] [0.0425] [0.0283] [0.2144]
µd1 18.7384 3.1024 16.9153 -0.3039 -2.2612 2.2743

[0.5076] [0.4419] [0.691] [0.1461] [0.0893] [0.3412]

µX,STEM -5.1322 3.8767 2.0138 7.4614 8.0496 2.8957
[0.3121] [0.3017] [0.0961] [0.453] [0.3364] [0.1916]

µX,FIN -11.7332 -2.9445 -1.4988 0.6211 -3.7295 5.735
[0.8499] [0.5674] [0.3792] [0.381] [0.4408] [0.3263]

µX,MED 7.1795 -1.0502 1.918 -1.6456 -7.5212 -14.348
[0.5578] [0.2793] [0.1722] [0.3956] [0.6757] [1.2808]

νd1 0.4596 -0.0773 2.7294 0.0399 0.5844 2.2082
[0.073] [0.0459] [0.0269] [0.0444] [0.0516] [0.1145]

νX,STEM 2.7988 2.9991 1.752 2.9994 2.9885 -2.9022
[0.1119] [0.1172] [0.1591] [0.1179] [0.0706] [1.7772]

νX,FIN 2.8043 2.65 1.5981 2.8016 2.9536 -2.1044
[0.0681] [0.0686] [0.1113] [0.0577] [0.0369] [1.4557]

νX,MED -0.6704 1.2725 -1.6872 1.7481 1.0976 2.4194
[0.3478] [0.1653] [0.9522] [0.1583] [0.1879] [0.1209]

ln(σd1) -8.0958 6.2332 4.8218 2.5848 -14.3383 19.9639
[0.2669] [0.4444] [0.1587] [0.5162] [0.2752] [0.6979]

ln(σX,STEM ) -0.3587 -1.2404 0.4852 1.9126 5.6399 -3.3723
[0.1268] [0.2316] [0.0968] [0.2988] [0.2929] [0.2044]

ln(σX,FIN ) -2.7558 -4.93 -1.3575 -1.1153 7.3209 -5.1778
[0.4987] [0.4187] [0.1484] [0.3136] [0.2506] [0.3016]

ln(σX,MED) -7.01 -3.1224 -1.259 -2.8703 -6.5766 -9.2358
[0.4286] [0.3368] [0.1717] [0.408] [0.4678] [0.8323]

Note: This table presents the full set of parameter estimates for the benchmark model set up in Section 7.2 and detailed in Appendix D. Each
column corresponds to the column with the same column number in Table B8, Panel B. Column 1 and 2 report the results of estimation that
cover STEM students whose score is between 40% and 60% of the population. Column 3 and 4 report the results of estimation that cover STEM
students whose score is between 60% and 80% of the population. Column 5 and 6 report the results of estimation that cover STEM students
whose score is between 80% and 100% of the population. Odd columns report the results of the one-type rational model. Even columns report
the results of the mixture model.
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Table B10: Major Preference and its Impact on Risk Taking

(1) (2) (3) (4) (5) (6)
Major Top Concern Estimated Prob Subjective Beliefs

SES Index (Normalized) -2.24%** -2.66%**
(0.92%) (1.17%)

Major Top Concern 3.25% 4.09% 8.94%*** 8.01%***
(2.85%) (3.00%) (2.43%) (2.51%)

Share of Major Top Concern 13.7%
Implied Impact on 1st Choices 0.4% 0.6% 1.2% 1.1%
Priority Score Yes Yes Yes Yes Yes Yes
Demographic Variables No Yes No Yes No Yes
College Preferences No Yes No Yes No Yes
Number of Observations 1412 1412 1386 1386 1412 1412
R squared 0.009 0.091 0.138 0.201 0.035 0.087

Note: Columns 1 and 2 present regressions that examine whether share of survey takers who think major is
their top concern is correlated with SES Index. Columns 3 and 4 present the regression that examines
whether those who declare major to be of top concern take different amount of risks on their first choices,
in terms of the estimated unconditional admission probability. Columns 5 and 6 examine whether those
who declare major to be of top concern take different amount of risks on their first choices, in terms of
subjective probability. Columns 1,3,5 only control for priority score, whereas Columns 2,4,6 additionally
control for demographics as well as stated college preferences. The share of people who think major is most
important have been reported below the estimate for Columns 1 and 2. The implied impact of major
consideration on the risk-taking of first choices is reported below the estimated coefficient in Columns
3,4,5,6. This is calculated as the product of the share of people who think major is the most important,
and the average of additional cautiousness for the first choices among this group of people. This table is
helpful for the discussion in Section E.4.
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Table B11: Value of Moments: 40 - 60 Percentile Test Score

SES Quarter (1st = Most Disadvantaged)
Varname 1st 2nd 3rd 4th

Mean Assignment Probability of 1st Choice 48.55% 49.56% 54.96% 45.56%
(1.07%) (1.32%) (1.21%) (1.31%)

Mean Assignment Probability of 2nd Choice 64.96% 70.22% 74.05% 67.54%
(0.98%) (1.18%) (1.02%) (1.18%)

Mean Assignment Probability of 3rd Choice 77.15% 81.92% 83.22% 79.63%
(0.88%) (0.99%) (0.87%) (1.02%)

Mean Assignment Probability of 4th Choice 87.73% 89.83% 92.26% 91.82%
(0.7%) (0.81%) (0.64%) (0.72%)

Share of Reversals R≥75% 13.85% 9.22% 7.53% 6.88%
(0.91%) (0.98%) (0.83%) (0.87%)

Share of Reversals R≥50% 20.63% 15.41% 13.5% 15.5%
(1.07%) (1.22%) (1.08%) (1.25%)

Share of Reversals R≥25% 31.73% 25.42% 23.97% 26.92%
(1.23%) (1.48%) (1.35%) (1.53%)

Share of Reversals R≥0% 60.8% 56.36% 54.89% 55.36%
(1.29%) (1.68%) (1.57%) (1.72%)

Competitiveness(Normalized) of Admitting College Mean 0.384 0.3678 0.3876 0.3632
(0.0077) (0.0099) (0.0095) (0.0105)

Share of Admission 96.02% 96.06% 97.55% 97.79%
(0.52%) (0.66%) (0.49%) (0.51%)

Competitiveness(Normalized) Mean: First Choices -0.107 -0.1442 -0.2118 -0.0746
(0.0142) (0.0165) (0.0149) (0.0171)

Distance(Normalized) Mean: First Choices -0.8255 -0.5104 -0.4462 -0.0974
(0.0098) (0.0118) (0.0111) (0.014)

STEM Concentration Share: First Choices 39.82% 44.21% 44.03% 48.37%
(0.8%) (1.09%) (1.09%) (1.14%)

Finance Concentration Share: First Choices 7.4% 8.66% 7.05% 6.99%
(0.4%) (0.74%) (0.75%) (1.06%)

Medical School Share: First Choices 18.3% 14.17% 14.09% 10.96%
(0.7%) (1.12%) (1.06%) (1.23%)

Competitiveness(Normalized) Mean: Second Choices -0.2998 -0.3635 -0.4059 -0.3054
(0.0126) (0.0151) (0.013) (0.0143)

Distance(Normalized) Mean: Second Choices -0.6479 -0.5372 -0.4028 -0.0053
(0.0084) (0.01) (0.01) (0.0129)

STEM Concentration Share: Second Choices 45.01% 45.14% 49.16% 50.23%
(0.85%) (1.07%) (1.11%) (1.15%)

Finance Concentration Share: Second Choices 8.1% 10.52% 6.52% 9.04%
(0.52%) (0.78%) (0.64%) (1.03%)

Medical School Share: Second Choices 11.84% 10.86% 11.85% 7.75%
(0.83%) (1.12%) (1.15%) (1.29%)

Competitiveness(Normalized) Mean: Third Choices -0.456 -0.5116 -0.5213 -0.4475
(0.0123) (0.0133) (0.0122) (0.0134)

Distance(Normalized) Mean: Third Choices -0.7354 -0.538 -0.3114 -0.0846
(0.0082) (0.0096) (0.0086) (0.0116)

STEM Concentration Share: Third Choices 45.34% 48.08% 47.67% 51.43%
(0.82%) (1.18%) (1.13%) (1.17%)

Finance Concentration Share: Third Choices 8.39% 8.15% 7.09% 8.71%
(0.42%) (0.7%) (0.65%) (0.97%)

Medical School Share: Third Choices 10.95% 8.96% 8.5% 6.32%
(0.81%) (1.14%) (1.2%) (1.33%)

Competitiveness(Normalized) Mean: Fourth Choices -0.6332 -0.6766 -0.706 -0.6726
(0.0113) (0.0129) (0.0108) (0.0122)

Distance(Normalized) Mean: Fourth Choices -1.0074 -0.7478 -0.5377 -0.3027
(0.0068) (0.008) (0.0081) (0.0104)

STEM Concentration Share: Fourth Choices 38.89% 39.76% 42.89% 45.34%
(0.83%) (1.05%) (1.03%) (1.1%)

Finance Concentration Share: Fourth Choices 4.43% 5.51% 5.52% 4.35%
(0.43%) (0.57%) (0.6%) (0.85%)

Medical School Share: Fourth Choices 12.16% 9.34% 7.43% 8.1%
(0.73%) (1.05%) (1.06%) (1.24%)

Note: This table presents the point estimate and standard error of moments for structural estimation in Section 7.3. The moments are calculated
using the science-track student whose score is between 40th and 60th percentile among elite college eligible applicants. Standard errors are in the
parenthesis.
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Table B12: Fit of Benchmark Rational Model: 40 - 60 Percentile Test Score

SES Quarter (1st = Most Disadvantaged)
Varname 1st 2nd 3rd 4th

Mean Assignment Probability of 1st Choice 28.16% 29.66% 30.16% 30.24%
[-20.39%] [-19.9%] [-24.8%] [-15.32%]

Mean Assignment Probability of 2nd Choice 49.36% 50.26% 51.26% 51.6%
[-15.6%] [-19.96%] [-22.79%] [-15.94%]

Mean Assignment Probability of 3rd Choice 76.11% 76.58% 77.12% 77.36%
[-1.05%] [-5.34%] [-6.1%] [-2.27%]

Mean Assignment Probability of 4th Choice 99.84% 99.83% 99.81% 99.79%
[12.11%] [10%] [7.56%] [7.98%]

Share of Reversals R≥75% 8.21% 7.56% 7.6% 8.3%
[-5.63%] [-1.66%] [0.07%] [1.42%]

Share of Reversals R≥¿=50% 11.06% 10.29% 10.22% 10.32%
[-9.57%] [-5.12%] [-3.28%] [-5.18%]

Share of Reversals R≥25% 14.93% 13.58% 13.06% 12.51%
[-16.8%] [-11.84%] [-10.91%] [-14.41%]

Share of Reversals R≥0% 35.61% 33.77% 32.31% 30.3%
[-25.19%] [-22.59%] [-22.58%] [-25.07%]

Competitiveness(Normalized) of Admitting College Mean 0.3745 0.3627 0.3653 0.3823
[-0.0095] [-0.0051] [-0.0223] [0.0191]

Share of Admission 99.99% 100% 99.99% 99.98%
[3.97%] [3.93%] [2.43%] [2.2%]

Competitiveness(Normalized) Mean: First Choices 0.1638 0.1218 0.1208 0.1579
[0.2708] [0.266] [0.3325] [0.2325]

Distance(Normalized) Mean: First Choices -0.751 -0.5381 -0.3889 -0.1086
[0.0746] [-0.0276] [0.0573] [-0.0112]

STEM Concentration Share: First Choices 39.36% 44.01% 46.95% 51.68%
[-0.46%] [-0.2%] [2.92%] [3.31%]

Finance Concentration Share: First Choices 9.02% 9.6% 9.09% 8.12%
[1.61%] [0.94%] [2.04%] [1.13%]

Medical School Share: First Choices 15.68% 12.98% 11.6% 8.48%
[-2.62%] [-1.19%] [-2.49%] [-2.48%]

Competitiveness(Normalized) Mean: Second Choices -0.1284 -0.1533 -0.1595 -0.1408
[0.1714] [0.2102] [0.2464] [0.1646]

Distance(Normalized) Mean: Second Choices -0.7573 -0.5321 -0.3734 -0.0683
[-0.1093] [0.0051] [0.0294] [-0.063]

STEM Concentration Share: Second Choices 44.05% 47.84% 48.98% 50.72%
[-0.96%] [2.7%] [-0.18%] [0.49%]

Finance Concentration Share: Second Choices 8.71% 9.53% 9.4% 8.54%
[0.61%] [-0.99%] [2.88%] [-0.5%]

Medical School Share: Second Choices 16.72% 14.96% 15.4% 15.75%
[4.87%] [4.1%] [3.56%] [8%]

Competitiveness(Normalized) Mean: Third Choices -0.3934 -0.4096 -0.4111 -0.3976
[0.0625] [0.102] [0.1102] [0.0499]

Distance(Normalized) Mean: Third Choices -0.8113 -0.5897 -0.4365 -0.1336
[-0.0759] [-0.0517] [-0.1251] [-0.049]

STEM Concentration Share: Third Choices 42.05% 44.27% 44.17% 44.18%
[-3.29%] [-3.81%] [-3.5%] [-7.25%]

Finance Concentration Share: Third Choices 11.03% 11.98% 12.5% 12.16%
[2.64%] [3.83%] [5.42%] [3.44%]

Medical School Share: Third Choices 15.87% 13.33% 12.46% 12.92%
[4.92%] [4.37%] [3.96%] [6.6%]

Competitiveness(Normalized) Mean: Fourth Choices -0.8345 -0.8378 -0.8329 -0.818
[-0.2012] [-0.1612] [-0.127] [-0.1454]

Distance(Normalized) Mean: Fourth Choices -0.903 -0.6735 -0.5153 -0.2077
[0.1044] [0.0743] [0.0224] [0.0949]

STEM Concentration Share: Fourth Choices 45.1% 47.26% 47.05% 44.11%
[6.22%] [7.49%] [4.16%] [-1.23%]

Finance Concentration Share: Fourth Choices 5.17% 5.96% 6.92% 8.68%
[0.75%] [0.45%] [1.4%] [4.33%]

Medical School Share: Fourth Choices 19.99% 17.03% 15.63% 13.37%
[7.83%] [7.69%] [8.2%] [5.27%]

Note: This table presents details of the fit of rational benchmark model in Section 7.4 and Table 4. The predicted value are calculated using the
science-track student whose score is between 40th and 60th percentile among elite college eligible applicants. Prediction error, as defined by
predicted value minus the value of moments, are in squared brackets.
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Table B13: Fit of Benchmark Mixture Model: 40 - 60 Percentile Test Score

SES Quarter (1st = Most Disadvantaged)
Varname 1st 2nd 3rd 4th

Mean Assignment Probability of 1st Choice 59.22% 58.88% 58.23% 57.7%
[10.67%] [9.32%] [3.27%] [12.14%]

Mean Assignment Probability of 2nd Choice 64.84% 65.26% 64.77% 64.91%
[-0.12%] [-4.96%] [-9.29%] [-2.63%]

Mean Assignment Probability of 3rd Choice 76.62% 77.65% 78.2% 78.75%
[-0.54%] [-4.27%] [-5.01%] [-0.88%]

Mean Assignment Probability of 4th Choice 92.12% 94.11% 95.25% 96.82%
[4.39%] [4.28%] [2.99%] [5.01%]

Share of Reversals R≥75% 4.16% 3.52% 3.14% 3.42%
[-9.68%] [-5.7%] [-4.39%] [-3.46%]

Share of Reversals R≥50% 6.98% 6.5% 6.23% 6.75%
[-13.65%] [-8.91%] [-7.28%] [-8.76%]

Share of Reversals R≥25% 14.36% 14.07% 13.93% 14.09%
[-17.38%] [-11.35%] [-10.05%] [-12.83%]

Share of Reversals R≥0% 56.59% 53.26% 50.54% 46.26%
[-4.2%] [-3.1%] [-4.35%] [-9.1%]

Competitiveness(Normalized) of Admitting College Mean 0.4563 0.4621 0.471 0.4924
[0.0723] [0.0943] [0.0834] [0.1291]

Share of Admission 99.54% 99.7% 99.78% 99.85%
[3.51%] [3.64%] [2.23%] [2.06%]

Competitiveness(Normalized) Mean: First Choices -0.2064 -0.2391 -0.2384 -0.2287
[-0.0994] [-0.0949] [-0.0266] [-0.1541]

Distance(Normalized) Mean: First Choices -0.8163 -0.5128 -0.3604 -0.1043
[0.0092] [-0.0024] [0.0858] [-0.0069]

STEM Concentration Share: First Choices 38.12% 40.58% 41.35% 42.86%
[-1.7%] [-3.63%] [-2.68%] [-5.51%]

Finance Concentration Share: First Choices 7.58% 8.92% 8.98% 9.85%
[0.17%] [0.25%] [1.93%] [2.86%]

Medical School Share: First Choices 13.76% 12.37% 12.14% 13.23%
[-4.54%] [-1.8%] [-1.95%] [2.28%]

Competitiveness(Normalized) Mean: Second Choices -0.3004 -0.3364 -0.3341 -0.3269
[-0.0006] [0.0271] [0.0718] [-0.0216]

Distance(Normalized) Mean: Second Choices -0.7857 -0.514 -0.3583 -0.1075
[-0.1377] [0.0233] [0.0445] [-0.1023]

STEM Concentration Share: Second Choices 41.22% 43.18% 44.25% 45.39%
[-3.79%] [-1.95%] [-4.91%] [-4.84%]

Finance Concentration Share: Second Choices 7.22% 8.37% 8.68% 8.97%
[-0.88%] [-2.15%] [2.16%] [-0.06%]

Medical School Share: Second Choices 12.99% 11.01% 10.37% 10.24%
[1.15%] [0.15%] [-1.47%] [2.49%]

Competitiveness(Normalized) Mean: Third Choices -0.4423 -0.4754 -0.4815 -0.4771
[0.0137] [0.0362] [0.0398] [-0.0296]

Distance(Normalized) Mean: Third Choices -0.8386 -0.5564 -0.3989 -0.132
[-0.1032] [-0.0183] [-0.0875] [-0.0475]

STEM Concentration Share: Third Choices 43.24% 45.05% 46.5% 48.19%
[-2.11%] [-3.03%] [-1.18%] [-3.25%]

Finance Concentration Share: Third Choices 8.39% 10.11% 10.46% 11.31%
[0%] [1.96%] [3.38%] [2.6%]

Medical School Share: Third Choices 13.91% 10.72% 8.68% 6.52%
[2.97%] [1.76%] [0.18%] [0.2%]

Competitiveness(Normalized) Mean: Fourth Choices -0.7101 -0.7497 -0.7682 -0.7934
[-0.0768] [-0.073] [-0.0622] [-0.1208]

Distance(Normalized) Mean: Fourth Choices -0.9644 -0.69 -0.5176 -0.2172
[0.043] [0.0578] [0.0201] [0.0854]

STEM Concentration Share: Fourth Choices 43.27% 47.21% 49.41% 53.14%
[4.38%] [7.45%] [6.52%] [7.8%]

Finance Concentration Share: Fourth Choices 6.15% 6.63% 6.95% 7.93%
[1.72%] [1.12%] [1.43%] [3.57%]

Medical School Share: Fourth Choices 15.54% 12.81% 11.06% 7.38%
[3.38%] [3.47%] [3.63%] [-0.72%]

Note: This table presents details of the fit of mixture model in Section 7.4 and Table 4. The predicted value are calculated using the
science-track student whose score is between 40th and 60th percentile among elite college eligible applicants. Prediction error, as defined by
predicted value minus the value of moments, are in squared brackets.
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Table B14: Value of Moments: 60 - 80 Percentile Test Score

SES Quarter (1st = Most Disadvantaged)
Varname 1st 2nd 3rd 4th

Mean Assignment Probability of 1st Choice 54.14% 53.11% 52.96% 45.48%
(1.02%) (1.24%) (1.11%) (1.01%)

Mean Assignment Probability of 2nd Choice 70.12% 73.36% 72.27% 69.73%
(0.9%) (1.01%) (0.94%) (0.86%)

Mean Assignment Probability of 3rd Choice 80.5% 84.08% 85.36% 82.37%
(0.79%) (0.83%) (0.73%) (0.68%)

Mean Assignment Probability of 4th Choice 90.51% 92.74% 93.13% 93.17%
(0.6%) (0.6%) (0.55%) (0.48%)

Share of Reversals R≥75% 5.99% 2.93% 3.15% 2.63%
(0.67%) (0.6%) (0.56%) (0.49%)

Share of Reversals R≥50% 14.5% 8.91% 7.93% 7.34%
(1%) (1.01%) (0.87%) (0.79%)

Share of Reversals R≥25% 27.27% 18.93% 18.31% 17.48%
(1.26%) (1.38%) (1.25%) (1.15%)

Share of Reversals R≥0% 54.69% 51.53% 49.03% 51.45%
(1.41%) (1.76%) (1.61%) (1.52%)

Competitiveness(Normalized) of Admitting College Mean 0.4634 0.3866 0.3675 0.3469
(0.0119) (0.0132) (0.0121) (0.0116)

Share of Admission 97.56% 97.92% 97.97% 98.64%
(0.44%) (0.5%) (0.46%) (0.35%)

Competitiveness(Normalized) Mean: First Choices 0.3794 0.4188 0.4187 0.5455
(0.0159) (0.018) (0.0167) (0.0147)

Distance(Normalized) Mean: First Choices -0.578 -0.3198 -0.178 0.0791
(0.0123) (0.0146) (0.014) (0.0141)

STEM Concentration Share: First Choices 40.5% 42.12% 44.35% 45.2%
(0.76%) (1.02%) (0.88%) (0.91%)

Finance Concentration Share: First Choices 7.64% 11.11% 7.63% 6.79%
(0.42%) (0.57%) (0.61%) (0.59%)

Medical School Share: First Choices 16.47% 12.7% 10.68% 7.34%
(0.93%) (1.31%) (1.14%) (1.19%)

Competitiveness(Normalized) Mean: Second Choices 0.1929 0.1811 0.2058 0.2998
(0.0149) (0.016) (0.0152) (0.013)

Distance(Normalized) Mean: Second Choices -0.5204 -0.2852 -0.2205 0.052
(0.0115) (0.015) (0.0132) (0.0137)

STEM Concentration Share: Second Choices 42.22% 45.58% 46.06% 49%
(0.79%) (1.11%) (0.97%) (0.88%)

Finance Concentration Share: Second Choices 8.94% 11.92% 9.31% 7.74%
(0.45%) (0.65%) (0.64%) (0.7%)

Medical School Share: Second Choices 13.81% 9.58% 10.95% 6.74%
(0.9%) (1.28%) (1.19%) (1.17%)

Competitiveness(Normalized) Mean: Third Choices 0.022 0.0086 0.0164 0.1283
(0.0144) (0.017) (0.0153) (0.0135)

Distance(Normalized) Mean: Third Choices -0.4913 -0.3728 -0.1769 0.0495
(0.0112) (0.0141) (0.0125) (0.0131)

STEM Concentration Share: Third Choices 44.54% 46.96% 46.45% 51.93%
(0.8%) (1.02%) (0.92%) (0.92%)

Finance Concentration Share: Third Choices 9.54% 11.55% 8.87% 10.73%
(0.51%) (0.79%) (0.75%) (0.75%)

Medical School Share: Third Choices 11.4% 9.44% 9.71% 6.61%
(0.92%) (1.23%) (1.23%) (1.22%)

Competitiveness(Normalized) Mean: Fourth Choices -0.2358 -0.2258 -0.2299 -0.1447
(0.0147) (0.0173) (0.0161) (0.0144)

Distance(Normalized) Mean: Fourth Choices -0.8549 -0.5139 -0.3418 -0.0737
(0.0099) (0.0123) (0.0115) (0.0121)

STEM Concentration Share: Fourth Choices 39.24% 44.33% 48.15% 48.79%
(0.76%) (1.06%) (0.95%) (0.95%)

Finance Concentration Share: Fourth Choices 8.69% 9.3% 6.76% 9.67%
(0.42%) (0.75%) (0.73%) (0.79%)

Medical School Share: Fourth Choices 12.24% 11.72% 11.09% 6.78%
(0.87%) (1.21%) (1.12%) (1.13%)

Note: This table presents the point estimate and standard error of moments for structural estimation in Section 7.3. The moments are calculated
using the science-track student whose score is between 60th and 80th percentile among elite college eligible applicants. Standard errors are in the
parenthesis.
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Table B15: Fit of Benchmark Rational Model: 60 - 80 Percentile Test Score

SES Quarter (1st = Most Disadvantaged)
Varname 1st 2nd 3rd 4th

Mean Assignment Probability of 1st Choice 33.86% 32.29% 31.51% 30.82%
[-20.27%] [-20.82%] [-21.44%] [-14.65%]

Mean Assignment Probability of 2nd Choice 53.08% 51.81% 51.21% 50.3%
[-17.04%] [-21.55%] [-21.05%] [-19.43%]

Mean Assignment Probability of 3rd Choice 77.57% 77.56% 77.43% 76.87%
[-2.93%] [-6.52%] [-7.92%] [-5.5%]

Mean Assignment Probability of 4th Choice 99.43% 99.32% 99.22% 98.96%
[8.93%] [6.58%] [6.09%] [5.79%]

Share of Reversals R≥75% 3.43% 2.89% 2.63% 2.02%
[-2.56%] [-0.04%] [-0.52%] [-0.61%]

Share of Reversals R≥50% 7.9% 6.55% 6.1% 4.97%
[-6.6%] [-2.36%] [-1.84%] [-2.37%]

Share of Reversals ≥25% 15.22% 12.92% 11.79% 9.84%
[-12.04%] [-6.01%] [-6.52%] [-7.64%]

Share of Reversals R≥0% 39.62% 37.59% 36.3% 33.13%
[-15.06%] [-13.93%] [-12.74%] [-18.32%]

Competitiveness(Normalized) of Admitting College Mean 0.3689 0.3489 0.3453 0.3321
[-0.0944] [-0.0377] [-0.0222] [-0.0148]

Share of Admission 99.94% 99.93% 99.93% 99.86%
[2.38%] [2.01%] [1.97%] [1.22%]

Competitiveness(Normalized) Mean: First Choices 0.6925 0.6886 0.6996 0.7433
[0.3131] [0.2697] [0.2809] [0.1978]

Distance(Normalized) Mean: First Choices -0.6088 -0.3851 -0.2444 0.016
[-0.0308] [-0.0653] [-0.0665] [-0.0632]

STEM Concentration Share: First Choices 41.48% 44.48% 46.24% 49.4%
[0.97%] [2.36%] [1.88%] [4.2%]

Finance Concentration Share: First Choices 9.55% 10.06% 9.45% 8.69%
[1.91%] [-1.05%] [1.83%] [1.9%]

Medical School Share: First Choices 19.36% 15.43% 13.03% 8.62%
[2.89%] [2.73%] [2.35%] [1.28%]

Competitiveness(Normalized) Mean: Second Choices 0.4923 0.4969 0.5088 0.5603
[0.2994] [0.3158] [0.303] [0.2606]

Distance(Normalized) Mean: Second Choices -0.6017 -0.3798 -0.2404 0.0267
[-0.0812] [-0.0946] [-0.0199] [-0.0254]

STEM Concentration Share: Second Choices 42.22% 44.99% 47.03% 50.21%
[0.01%] [-0.59%] [0.97%] [1.21%]

Finance Concentration Share: Second Choices 8.39% 9.28% 9.01% 8.91%
[-0.55%] [-2.64%] [-0.31%] [1.17%]

Medical School Share: Second Choices 17.06% 14.2% 11.74% 8.25%
[3.25%] [4.61%] [0.78%] [1.51%]

Competitiveness(Normalized) Mean: Third Choices 0.2384 0.2446 0.2577 0.3073
[0.2164] [0.236] [0.2413] [0.179]

Distance(Normalized) Mean: Third Choices -0.622 -0.3906 -0.2425 0.0356
[-0.1307] [-0.0178] [-0.0656] [-0.0139]

STEM Concentration Share: Third Choices 43.22% 45.85% 47.49% 50.58%
[-1.32%] [-1.11%] [1.04%] [-1.35%]

Finance Concentration Share: Third Choices 6.52% 6.93% 7.2% 7.18%
[-3.02%] [-4.62%] [-1.67%] [-3.55%]

Medical School Share: Third Choices 12.72% 10.88% 9.28% 7.19%
[1.32%] [1.44%] [-0.43%] [0.59%]

Competitiveness(Normalized) Mean: Fourth Choices -0.2976 -0.2602 -0.2363 -0.1777
[-0.0617] [-0.0344] [-0.0064] [-0.033]

Distance(Normalized) Mean: Fourth Choices -0.6254 -0.3759 -0.2276 0.0548
[0.2295] [0.138] [0.1142] [0.1285]

STEM Concentration Share: Fourth Choices 44.24% 46.51% 48.07% 51.19%
[5%] [2.18%] [-0.08%] [2.4%]

Finance Concentration Share: Fourth Choices 9.95% 8.29% 6.99% 4.9%
[1.26%] [-1.01%] [0.23%] [-4.76%]

Medical School Share: Fourth Choices 9.46% 7.57% 6.77% 5.91%
[-2.77%] [-4.15%] [-4.32%] [-0.88%]

Note: This table presents details of the fit of rational benchmark model in Section 7.4 and Table 4. The predicted value are calculated using the
science-track student whose score is between 60th and 80th percentile among elite college eligible applicants. Prediction error, as defined by
predicted value minus the value of moments, are in squared brackets.
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Table B16: Fit of Benchmark Mixture Model: 60 - 80 Percentile Test Score

SES Quarter (1st = Most Disadvantaged)
Varname 1st 2nd 3rd 4th

Mean Assignment Probability of 1st Choice 57.55% 55.46% 54.14% 52.76%
[3.41%] [2.35%] [1.18%] [7.29%]

Mean Assignment Probability of 2nd Choice 64.13% 63.22% 62.95% 62.94%
[-5.99%] [-10.14%] [-9.32%] [-6.79%]

Mean Assignment Probability of 3rd Choice 75.94% 77.11% 77.84% 79.25%
[-4.55%] [-6.97%] [-7.52%] [-3.12%]

Mean Assignment Probability of 4th Choice 90.24% 91.77% 92.92% 94.48%
[-0.27%] [-0.98%] [-0.21%] [1.32%]

Share of Reversals R≥75% 4.13% 2.46% 1.75% 0.81%
[-1.86%] [-0.47%] [-1.41%] [-1.82%]

Share of Reversals R≥50% 11.9% 8.65% 6.75% 4.27%
[-2.6%] [-0.26%] [-1.19%] [-3.06%]

Share of Reversals R≥25% 28.79% 24.93% 22.07% 17.78%
[1.52%] [6.01%] [3.76%] [0.3%]

Share of Reversals R≥0% 65.25% 62.69% 60.47% 58.04%
[10.56%] [11.16%] [11.43%] [6.59%]

Competitiveness(Normalized) of Admitting College Mean 0.5212 0.474 0.454 0.4304
[0.0579] [0.0874] [0.0865] [0.0835]

Share of Admission 99.03% 99.32% 99.57% 99.79%
[1.47%] [1.39%] [1.61%] [1.14%]

Competitiveness(Normalized) Mean: First Choices 0.3209 0.3608 0.388 0.4382
[-0.0584] [-0.0581] [-0.0308] [-0.1074]

Distance(Normalized) Mean: First Choices -0.5789 -0.3384 -0.1999 0.0746
[-0.0008] [-0.0185] [-0.022] [-0.0045]

STEM Concentration Share: First Choices 39.73% 42.56% 45.27% 48.34%
[-0.77%] [0.44%] [0.91%] [3.14%]

Finance Concentration Share: First Choices 8.86% 8.97% 9.11% 8.69%
[1.22%] [-2.14%] [1.48%] [1.9%]

Medical School Share: First Choices 16.4% 12.08% 9.81% 7.21%
[-0.07%] [-0.62%] [-0.87%] [-0.13%]

Competitiveness(Normalized) Mean: Second Choices 0.257 0.2845 0.2999 0.3443
[0.0641] [0.1035] [0.0942] [0.0446]

Distance(Normalized) Mean: Second Choices -0.5437 -0.3093 -0.1793 0.0901
[-0.0233] [-0.0241] [0.0412] [0.038]

STEM Concentration Share: Second Choices 38.81% 42.21% 44.21% 47.68%
[-3.41%] [-3.37%] [-1.85%] [-1.32%]

Finance Concentration Share: Second Choices 9.24% 9.56% 9.38% 9.53%
[0.3%] [-2.35%] [0.06%] [1.79%]

Medical School Share: Second Choices 15.35% 12.52% 10.58% 8.7%
[1.54%] [2.94%] [-0.37%] [1.96%]

Competitiveness(Normalized) Mean: Third Choices 0.1502 0.1625 0.1729 0.2075
[0.1282] [0.1539] [0.1566] [0.0792]

Distance(Normalized) Mean: Third Choices -0.5674 -0.3575 -0.228 0.0434
[-0.0761] [0.0153] [-0.051] [-0.0061]

STEM Concentration Share: Third Choices 40.46% 43.58% 45.73% 48.68%
[-4.09%] [-3.37%] [-0.72%] [-3.24%]

Finance Concentration Share: Third Choices 7.98% 8.21% 8.29% 8.43%
[-1.55%] [-3.34%] [-0.58%] [-2.3%]

Medical School Share: Third Choices 13.64% 10.61% 9.48% 7.97%
[2.25%] [1.17%] [-0.23%] [1.37%]

Competitiveness(Normalized) Mean: Fourth Choices -0.1944 -0.1838 -0.1745 -0.1264
[0.0414] [0.042] [0.0554] [0.0183]

Distance(Normalized) Mean: Fourth Choices -0.7603 -0.5091 -0.3544 -0.0482
[0.0946] [0.0048] [-0.0126] [0.0255]

STEM Concentration Share: Fourth Choices 41.83% 45.46% 47.97% 51.02%
[2.59%] [1.13%] [-0.19%] [2.23%]

Finance Concentration Share: Fourth Choices 8.8% 8.94% 8.45% 7.54%
[0.11%] [-0.36%] [1.69%] [-2.13%]

Medical School Share: Fourth Choices 15.5% 11.69% 9.65% 7.35%
[3.27%] [-0.03%] [-1.44%] [0.57%]

Note: This table presents details of the fit of mixture model in Section 7.4 and Table 4. The predicted value are calculated using the
science-track student whose score is between 60th and 80th percentile among elite college eligible applicants. Prediction error, as defined by
predicted value minus the value of moments, are in squared brackets.
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Table B17: Value of Moments: 80 - 100 Percentile Test Score

SES Quarter (1st = Most Disadvantaged)
Varname 1st 2nd 3rd 4th

Mean Assignment Probability of 1st Choice 62.33% 61.76% 62.19% 55.77%
(1.23%) (1.38%) (1.15%) (0.82%)

Mean Assignment Probability of 2nd Choice 81.55% 82.78% 83.32% 78.51%
(0.88%) (0.91%) (0.76%) (0.58%)

Mean Assignment Probability of 3rd Choice 90.19% 90.63% 91.4% 89.97%
(0.65%) (0.71%) (0.53%) (0.39%)

Mean Assignment Probability of 4th Choice 95.1% 96.38% 96.99% 96.59%
(0.51%) (0.44%) (0.31%) (0.24%)

Share of Reversals R≥75% 2.82% 2.13% 1.47% 1.69%
(0.58%) (0.57%) (0.41%) (0.3%)

Share of Reversals R≥50% 6.98% 4.56% 3.06% 3.83%
(0.9%) (0.82%) (0.59%) (0.45%)

Share of Reversals R≥25% 16.28% 10.03% 10.32% 10.33%
(1.31%) (1.18%) (1.04%) (0.72%)

Share of Reversals R≥0% 49.33% 44.38% 43.99% 40.57%
(1.77%) (1.96%) (1.69%) (1.16%)

Competitiveness(Normalized) of Admitting College Mean 0.423 0.3781 0.3492 0.307
(0.0185) (0.0168) (0.0135) (0.0094)

Share of Admission 98.41% 98.78% 99.32% 99.73%
(0.44%) (0.43%) (0.28%) (0.12%)

Competitiveness(Normalized) Mean: First Choices 1.3059 1.3551 1.4226 1.6837
(0.0228) (0.0266) (0.024) (0.0167)

Distance(Normalized) Mean: First Choices -0.341 -0.3134 -0.1472 0.0324
(0.0163) (0.018) (0.0158) (0.0116)

STEM Concentration Share: First Choices 38.8% 38.91% 34.81% 32.97%
(1.18%) (1.22%) (0.96%) (0.57%)

Finance Concentration Share: First Choices 9.18% 9.73% 9.86% 9.57%
(0.55%) (0.72%) (0.76%) (0.58%)

Medical School Share: First Choices 10.04% 9.57% 7.14% 4.7%
(1.08%) (1.24%) (1.17%) (0.85%)

Competitiveness(Normalized) Mean: Second Choices 1.0676 1.1332 1.1852 1.4278
(0.0207) (0.0229) (0.0227) (0.015)

Distance(Normalized) Mean: Second Choices -0.3268 -0.1971 -0.0907 0.043
(0.0158) (0.0181) (0.0154) (0.0112)

STEM Concentration Share: Second Choices 42.18% 39.45% 42.3% 35.26%
(1.15%) (1.07%) (1.03%) (0.62%)

Finance Concentration Share: Second Choices 8.93% 11.86% 8.97% 8.23%
(0.6%) (0.65%) (0.75%) (0.58%)

Medical School Share: Second Choices 9.18% 8.63% 5.63% 3.52%
(1.13%) (1.39%) (1.19%) (0.87%)

Competitiveness(Normalized) Mean: Third Choices 0.9189 0.9631 1.0387 1.2415
(0.0212) (0.0243) (0.0224) (0.0148)

Distance(Normalized) Mean: Third Choices -0.3 -0.199 -0.0996 0.033
(0.016) (0.0176) (0.0155) (0.011)

STEM Concentration Share: Third Choices 41.88% 47.13% 42.28% 37.49%
(1.17%) (1.18%) (1.03%) (0.71%)

Finance Concentration Share: Third Choices 9% 9.77% 8.99% 9.04%
(0.65%) (0.77%) (0.72%) (0.57%)

Medical School Share: Third Choices 9.38% 6.67% 5.76% 3.92%
(1.08%) (1.36%) (1.22%) (0.91%)

Competitiveness(Normalized) Mean: Fourth Choices 0.6635 0.6843 0.7838 0.981
(0.0234) (0.0265) (0.0241) (0.0161)

Distance(Normalized) Mean: Fourth Choices -0.4375 -0.3218 -0.1766 0.012
(0.0156) (0.0172) (0.0148) (0.0109)

STEM Concentration Share: Fourth Choices 41.21% 42.41% 40.52% 38.38%
(1.1%) (1.26%) (0.91%) (0.67%)

Finance Concentration Share: Fourth Choices 8.47% 10.92% 10.37% 7.34%
(0.64%) (0.67%) (0.79%) (0.56%)

Medical School Share: Fourth Choices 11.17% 9.34% 7.42% 5.78%
(1.14%) (1.36%) (1.22%) (0.92%)

Note: This table presents the point estimate and standard error of moments for structural estimation in Section 7.3. The moments are calculated
using the science-track student whose score is between 80th and 100th percentile among elite college eligible applicants. Standard errors are in
the parenthesis.
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Table B18: Fit of Benchmark Rational Model: 80 - 100 Percentile Test Score

SES Quarter (1st = Most Disadvantaged)
Varname 1st 2nd 3rd 4th

Mean Assignment Probability of 1st Choice 39.19% 37.61% 37.3% 38.23%
[-23.13%] [-24.14%] [-24.89%] [-17.55%]

Mean Assignment Probability of 2nd Choice 68.8% 67.83% 66.63% 64.14%
[-12.75%] [-14.96%] [-16.69%] [-14.37%]

Mean Assignment Probability of 3rd Choice 89.53% 89.31% 88.44% 87.2%
[-0.66%] [-1.32%] [-2.97%] [-2.77%]

Mean Assignment Probability of 4th Choice 99.42% 99.61% 99.26% 99.31%
[4.32%] [3.24%] [2.27%] [2.73%]

Share of Reversals R≥75% 4.76% 3.52% 3.41% 3.32%
[1.94%] [1.4%] [1.94%] [1.62%]

Share of Reversals R≥50% 7.67% 5.75% 5.83% 6.28%
[0.69%] [1.19%] [2.77%] [2.45%]

Share of Reversals R≥25% 15.07% 12.56% 13.29% 13.28%
[-1.21%] [2.53%] [2.98%] [2.94%]

Share of Reversals R≥0% 38.59% 36.47% 35.96% 33.42%
[-10.74%] [-7.9%] [-8.03%] [-7.15%]

Competitiveness(Normalized) of Admitting College Mean 0.4013 0.3614 0.3465 0.3408
[-0.0217] [-0.0167] [-0.0028] [0.0338]

Share of Admission 100% 100% 100% 100%
[1.59%] [1.22%] [0.68%] [0.27%]

Competitiveness(Normalized) Mean: First Choices 1.5675 1.6217 1.6821 1.8379
[0.2616] [0.2666] [0.2595] [0.1541]

Distance(Normalized) Mean: First Choices -0.3238 -0.2502 -0.1837 0.1079
[0.0173] [0.0632] [-0.0365] [0.0755]

STEM Concentration Share: First Choices 42.07% 40.22% 39.33% 36.77%
[3.27%] [1.32%] [4.53%] [3.8%]

Finance Concentration Share: First Choices 8.71% 9.42% 9.48% 9.71%
[-0.47%] [-0.31%] [-0.39%] [0.14%]

Medical School Share: First Choices 10.41% 8.11% 6.78% 4.09%
[0.38%] [-1.46%] [-0.36%] [-0.61%]

Competitiveness(Normalized) Mean: Second Choices 1.2752 1.3493 1.4339 1.6405
[0.2076] [0.2161] [0.2487] [0.2126]

Distance(Normalized) Mean: Second Choices -0.3153 -0.2546 -0.1991 0.08
[0.0115] [-0.0574] [-0.1084] [0.0369]

STEM Concentration Share: Second Choices 42.61% 40.44% 39.16% 35.97%
[0.43%] [1%] [-3.14%] [0.71%]

Finance Concentration Share: Second Choices 8.5% 9.28% 9.22% 8.84%
[-0.44%] [-2.58%] [0.26%] [0.61%]

Medical School Share: Second Choices 9.89% 7.62% 6.15% 3.76%
[0.71%] [-1.01%] [0.52%] [0.24%]

Competitiveness(Normalized) Mean: Third Choices 1.0099 1.0879 1.1847 1.4037
[0.091] [0.1248] [0.146] [0.1622]

Distance(Normalized) Mean: Third Choices -0.3025 -0.2461 -0.1793 0.0792
[-0.0025] [-0.0471] [-0.0797] [0.0462]

STEM Concentration Share: Third Choices 43.4% 40.88% 39.49% 35.66%
[1.52%] [-6.26%] [-2.79%] [-1.83%]

Finance Concentration Share: Third Choices 8.58% 9.28% 9.18% 8.95%
[-0.42%] [-0.49%] [0.2%] [-0.09%]

Medical School Share: Third Choices 9.76% 7.48% 6.13% 3.88%
[0.38%] [0.82%] [0.37%] [-0.05%]

Competitiveness(Normalized) Mean: Fourth Choices 0.5552 0.6517 0.7469 0.9699
[-0.1083] [-0.0326] [-0.0369] [-0.0111]

Distance(Normalized) Mean: Fourth Choices -0.2793 -0.2191 -0.1715 0.0402
[0.1582] [0.1027] [0.0051] [0.0282]

STEM Concentration Share: Fourth Choices 43.94% 41% 39.57% 35.97%
[2.73%] [-1.4%] [-0.94%] [-2.41%]

Finance Concentration Share: Fourth Choices 8.67% 9.35% 9.43% 9.61%
[0.2%] [-1.57%] [-0.93%] [2.27%]

Medical School Share: Fourth Choices 9.95% 8.09% 6.96% 4.57%
[-1.21%] [-1.24%] [-0.46%] [-1.21%]

Note: This table presents details of the fit of rational benchmark model in Section 7.4 and Table 4. The predicted value are calculated using the
science-track student whose score is between 80th and 100th percentile among elite college eligible applicants. Prediction error, as defined by
predicted value minus the value of moments, are in squared brackets.
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Table B19: Fit of Mixture Model: 80 - 100 Percentile Test Score

SES Quarter (1st = Most Disadvantaged)
Varname 1st 2nd 3rd 4th

Mean Assignment Probability of 1st Choice 70.94% 67.9% 66.06% 63.71%
[8.61%] [6.14%] [3.87%] [7.94%]

Mean Assignment Probability of 2nd Choice 81.36% 79.25% 77.4% 75.03%
[-0.19%] [-3.53%] [-5.92%] [-3.48%]

Mean Assignment Probability of 3rd Choice 89.09% 87.94% 87.42% 86.78%
[-1.1%] [-2.69%] [-3.98%] [-3.19%]

Mean Assignment Probability of 4th Choice 97.29% 97.4% 97.38% 97.49%
[2.19%] [1.02%] [0.39%] [0.9%]

Share of Reversals R≥75% 2.45% 2.85% 2.94% 4.04%
[-0.37%] [0.72%] [1.47%] [2.35%]

Share of Reversals R≥50% 5.61% 6.26% 6.45% 7.7%
[-1.37%] [1.71%] [3.39%] [3.87%]

Share of Reversals R≥25% 9.91% 11.06% 11.81% 13.04%
[-6.37%] [1.03%] [1.49%] [2.7%]

Share of Reversals R≥0% 58.84% 57.06% 56.02% 53.96%
[9.52%] [12.69%] [12.03%] [13.39%]

Competitiveness(Normalized) of Admitting College Mean 0.525 0.505 0.4894 0.4717
[0.102] [0.1269] [0.1402] [0.1647]

Share of Admission 99.72% 99.72% 99.68% 99.69%
[1.31%] [0.93%] [0.37%] [-0.04%]

Competitiveness(Normalized) Mean: First Choices 1.2309 1.2911 1.3683 1.5698
[-0.0749] [-0.064] [-0.0544] [-0.1139]

Distance(Normalized) Mean: First Choices -0.3479 -0.2025 -0.1318 0.0557
[-0.0069] [0.1109] [0.0154] [0.0233]

STEM Concentration Share: First Choices 42.54% 41.04% 40.14% 37.48%
[3.74%] [2.14%] [5.34%] [4.52%]

Finance Concentration Share: First Choices 9.27% 9.64% 9.61% 8.96%
[0.09%] [-0.09%] [-0.25%] [-0.6%]

Medical School Share: First Choices 10.02% 6.67% 4.73% 2.13%
[-0.02%] [-2.9%] [-2.41%] [-2.57%]

Competitiveness(Normalized) Mean: Second Choices 1.0832 1.1446 1.2309 1.4415
[0.0156] [0.0114] [0.0457] [0.0136]

Distance(Normalized) Mean: Second Choices -0.2974 -0.1577 -0.0871 0.094
[0.0293] [0.0394] [0.0036] [0.051]

STEM Concentration Share: Second Choices 45.64% 44.3% 43.11% 38.2%
[3.46%] [4.86%] [0.81%] [2.94%]

Finance Concentration Share: Second Choices 10.05% 10.49% 10.14% 9.46%
[1.12%] [-1.38%] [1.17%] [1.23%]

Medical School Share: Second Choices 9.66% 6.81% 5.19% 2.99%
[0.48%] [-1.82%] [-0.44%] [-0.53%]

Competitiveness(Normalized) Mean: Third Choices 0.9598 1.0195 1.1032 1.3041
[0.0409] [0.0564] [0.0645] [0.0626]

Distance(Normalized) Mean: Third Choices -0.3201 -0.1863 -0.1141 0.0592
[-0.0201] [0.0127] [-0.0145] [0.0263]

STEM Concentration Share: Third Choices 41.78% 40.58% 40.44% 38.39%
[-0.1%] [-6.55%] [-1.84%] [0.91%]

Finance Concentration Share: Third Choices 9.5% 9.4% 9.25% 9.34%
[0.5%] [-0.37%] [0.27%] [0.29%]

Medical School Share: Third Choices 9.06% 6.73% 5.23% 3.36%
[-0.32%] [0.06%] [-0.53%] [-0.56%]

Competitiveness(Normalized) Mean: Fourth Choices 0.7293 0.7723 0.8496 1.0278
[0.0657] [0.088] [0.0657] [0.0468]

Distance(Normalized) Mean: Fourth Choices -0.4108 -0.2956 -0.2228 -0.0546
[0.0267] [0.0262] [-0.0462] [-0.0666]

STEM Concentration Share: Fourth Choices 37.27% 36.38% 35.72% 34.33%
[-3.94%] [-6.03%] [-4.79%] [-4.06%]

Finance Concentration Share: Fourth Choices 9.2% 9.76% 9.95% 10.37%
[0.73%] [-1.15%] [-0.42%] [3.03%]

Medical School Share: Fourth Choices 11.82% 8.78% 7.33% 4.36%
[0.65%] [-0.55%] [-0.09%] [-1.42%]

Note: This table presents details of the fit of mixture model in Section 7.4 and Table 4. The predicted value are calculated using the
science-track student whose score is between 80th and 100th percentile among elite college eligible applicants. Prediction error, as defined by
predicted value minus the value of moments, are in squared brackets.
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C Additional Results and Details bout Structural Es-

timation

C.1 Specification

This section lays out the details on the specification and the moments we use for the struc-
tural estimation in Section 7.

Remember in in the mixture model there are two types of decision maker, the Rational
Type and the DC Type. We will use superscript RN to declare that the parameter is only
relevant for the Rational Type, and DC to declare that the parameter is only relevant for
the DC Type.

Remember in Section 7.2 we state that the utility specification we use is:

uij = f(θCi , Cij, SESi) + g(θdi , dj, SESi) + h(θXi , Xj, SESi) +Oi + ϵij

In the benchmark mixture model (Table 4, parameters differ across types. Below we
detail the specification we use for each type, for student i and college j:

uRN
ij = fRN

ij + gRN
ij + hij +ORN + ϵij

uDC
ij = fDC

ij + gDC
ij + hij +ODC + ϵij

where ϵ ∼ N(0, σ2
ϵ ), with σϵ being the same across types.

Details of fRN
ij and fDC

ij First let’s discuss the details of fRN
ij and fDC

ij . The specification
for fRN

ij is

fRN =
C

1−θCi
j − 1

1− θCi

Let NCj denote the normalized average cutoffs in 2014-2018 for college j. Then Cj ≡
10 ∗ (NCj −minj∈ elite college{NCj}) to ensure that Cj is non-negative. And

θCi ∼ N(µRN
C + µRN

β SESi, (σ
RN
C )2)

Similarly, for the DC Type we have

fDC =
C

1−θCi
j − 1

1− θCi

θCi ∼ N(µDC
C + νDC

C SESi, (σ
DC
C )2)

Details of gRN
ij and gDC

ij We next discuss the details of gRN
ij and gDC

ij . For gRN
ij we have,

gRN
ij = θdi (dj, d

2
j)

′
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where θdi = (θd1i , θd2i ), and the distribution of linear coefficient is assumed to be the same
across types to make the utility across types of similar scales:

θd1i ∼ N(µd1 + νd1SESi, (σd1)
2)

the distribution of quadratic coefficient is allowed to be different across types. For the
Rational Type we have:

θd2i ∼ N(µRN
d2 + νRN

d2 SESi, (σ
RN
d1 )2)

For the DC Type we have:

θd2i ∼ N(µDC
d2 + νDC

d2 SESi, (σ
DC
d2 )2)

Details of hij Lastly, we discuss hij. Xj contains three variables: whether the college is
a Science&Technology oriented college XSTEM

j , whether the college is a Finance oriented
college XFIN

j , and whether the college is a Medical School XMED
j . These categories are

mutually exclusive. hij is

hij = θX,STEM
i XSTEM

j + θX,FIN
i XFIN

j + θX,MED
i XMED

j

where

θX,STEM
i ∼ N(µX,STEM + νX,STEMSESi, (σX,STEM)2)

θX,FIN
i ∼ N(µX,FIN + νX,FINSESi, (σ

X,FIN)2)

θX,MED
i ∼ N(µX,MED + νX,MEDSESi, (σ

X,MED)2)

The probability of being

P (DC Type|SESi) =
exp(γ0 + γ1 ∗ SESi)

1 + exp(γ0 + γ1 ∗ SESi)

C.2 Subjective Beliefs

Evidence from Survey A number of recent studies have (Kapor et al., 2020; Arteaga
et al., 2021) documented that students may not accurately estimate the probability of ad-
mission, especially when the structure of priority scores is more complicated. While in our
context the only uncertainty comes from the variation in cutoffs, a one-dimensional object,
it is quite unlikely that students’ beliefs are perfectly accurate. We elicited students’ beliefs
regarding the unconditional probability of the four colleges on their lists, and compare the
elicited beliefs to the estimated probability that we construct. Subjective beliefs are posi-
tively correlated with estimated probability, at a correlation of 0.50. We define belief error
as the difference between subjective beliefs and estimated probability, and regress the error
on students’ socioeconomic index, controlling for other variables including priority score and
college preferences. As demonstrated in Table B6, students on average overestimate the
chance of admission by 12.1%, and the mean of absolute error is 31.0%.
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Despite substantial differences in contexts, the level of these statistics are not far from
estimates in Kapor et al. (2020). While socioeconomically advantaged students seem to
be somewhat more optimistic, 1 SD of increase in SES is associated with less than 1.85%
increase in subjective beliefs. The estimated mean of absolute error is also slightly larger
among the advantaged (Column 3 and 4), but the magnitude is also small (1 SD of increase
in SES is associated with around 1% increase in absolute errors). Taken together, the belief
data suggests that belief errors, while substantial, is at best weakly correlated with the
demographics.

Accounting for Heterogeneous Beliefs in Structural Estimation The specification
of the perceived probability admission of college j for student i is:

pij = max{0,min{1, p̂ij + τij}}

where τij ∼ N(µτ0 + µτ1SESi, exp(µτ2 + µτ3SESi)
2). µτ0 + µτ1SESi dictates student

i’s overall optimism; exp(µτ2 + µτ3SESi)
2 dictates the standard deviation of student i’s

idiosyncratic beliefs about admission probability on top of the student’s overall optimism.
In the estimation, we calibrate the parameter by referring to the estimation results from
survey. Specifically, the value of µτ0 = 12.1% and µτ1 = 1.85% is taken from results in Table
B6. µτ2 = −0.889 and µτ3 = 0 is based on the variance of beliefs and the finding that belief
error in its square term does not change in a quantitatively significant way across students
of different SES status.

In Panel B of Table B8, we consider the impact of heterogeneous beliefs about admission
probability on our estimation. We re-run the same specifications in Table 4. In terms of
fit, the mixture model outperforms the one-type rational model by an even larger margin
(54.3%, 85.8%, 93.9% for the 40% ∼ 60%, 60% ∼ 80%, 80% ∼ 100% respectively), with
the MMSC-BIC metric favoring the mixture model even more. The fit with heterogeneous
beliefs is not as good as our benchmark estimate in Table 4, potentially because our model
of belief errors is unable to perfectly capture students’ beliefs. Another surprising finding
is that the estimated share of the DC Type is more than 90% regardless of the subsample
we focus on. The overall overconfidence and substantial idiosyncrasies in beliefs ensure that
students have large positive belief errors about many colleges, such that, even if students
eliminate the risk by only choosing colleges whose subjective probability is close to 100%,
the objective probability may actually be much lower. This is particularly a problem for
the rational models, as the first choices under the rational rule are the most preferred, and
thus more likely to be the competitive colleges mistakenly chosen due to large positive belief
errors.
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D Mathematical Proofs

In this section we detail the derivation described in Section 6 and 7. Let’s begin with several
basic notations.

• For college A, the utility of admission is denoted by uA. The assignment probability
of A given priority score s is denoted by pA(s). Similarly, the assignment probability
of B, C is denoted by pB(s) and pC(s) and so on.

For convenience, throughout the derivation outside option u is normalized to 0. If a ROL
is shorter than 4, it means that students leave the rest of it blank.

Proposition 2 For a pair of college A, B, if there exists δ > 0 such that pA(s) = pB(s+ δ)
for any s ∈ [s, s̄] and pB(s) is continuous and log-concave, then

pA(s)

pB(s)

is decreasing in s when s ∈ [s, s̄].

Proof. Let

g(s) ≡ pA(s)

pB(s)
=

pB(s+ δ)

pB(s)

We have

sgn g′(s) = sgn (
p′B(s+ δ)

pB(s+ δ)
− p′B(s)

pB(s)
)

As pB(.) is log-concave,
d(ln(pB(x)))

dx
=

p′B(x)

pB(x)
decreases over x.

Thus,
g′(s) < 0

In our setting, as colleges which has comparable competitiveness are assumed to have
normally distributed cutoffs with similar dispersion, this lemma becomes applicable when
the derivation involves the pairwise ratio of assignment probability.

Several assumptions we often make in derivations are discussed below:

Assumption 1 For any pair of college X, Y where at least one appears on the list, uX ̸= uY

This assumption effectively says that choices matter for students as it rules out indiffer-
ence among listed colleges.

Assumption 2 For any pair of college X, Y , there does not exist a pair of priority score
s1 and s2 such that

sgn((pX(s1)− pY (s1)) ̸= sgn((pX(s2)− pY (s2))
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This assumption is testable if we regard assignment probability as observables. Intuitively
it says that the relationship where X is riskier/safer than Y does not change with one’s pri-
ority score s. It holds in our setting because cutoffs are assumed to be normally distributed,
where those with comparable competitive have similar dispersion in cutoff distribution.

Assumption 3 for any pairs of college A, B,

min{pA(s), pB(s)}
max{pA(s), pB(s)}

increases for s ∈ [s, s̄],

This assumption trivially holds if the condition in Proposition 2 holds. Intuitively it says
that the assignment probability of the riskier college increases at a faster rate than the safer
college, a property that is true for any pair of colleges with log-concave distributions,and
similar dispersion of cutoffs.

Important notations before we derive the theorems:

• Let u denote utility vector (u1, u2, .., un), preferences over colleges.

• The position of a college on the list is encoded by κ. κ = 0 if the college is omitted
from the list; κ = 1 if the college is listed as the fourth choice; κ = 2 if the college is
listed as the third choice; κ = 3 if the college is listed as the second choice; κ = 4 if
the college is listed as the first choice.

• Function R : (u,A, s) 7→ κ maps utility u, college A, priority score s into position κ
under Rational Decision Rule.

• Function D : (u,A, s) 7→ κ maps utility u, college A, priority score s into position κ
under DC Decision Rule.

• Set CRN
(u,A,κ) = {s|R(u,A, s) = κ} is the contour set of priority score s where A is listed

as at position κ under Rational Decision Rule and preference u.

• Set CDC
(u,A,κ) = {s|D(u,A, s) = κ} is the contour set of priority score s where A is listed

as at position κ under Rational Decision Rule and preference u.

Proposition 3 If Assumption 1, 2, 3 hold, for any s < s < s + δ < s̄ the following three
scenarios (forms of upward movement) are impossible under Rational Decision Rule (if length
of list is shorter than 4, it means that the rest is left blank):

1. Choose (X, Y ) when priority score is s; choose (Y, Z) when priority score is s+ δ;

2. Choose (X, Y, Z) when priority score is s; choose (Y, Z,W ) when priority score is s+δ;

3. Choose (X, Y, Z,W ) when priority score is s; choose (Y, Z,W,M) when priority score
is s+ δ;

Proof.
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Scenario 1 The optimality implies that

pX(s)uX + (1− pX(s))pY (s)uY ≥ pY (s)uY + (1− pY (s))pZ(s)uZ

and

pX(s+ δ))uX + (1− pX(s+ δ)))pY (s+ δ))uY ≤ pY (s+ δ))uY + (1− pY (s+ δ)))pZ(s+ δ))uZ

Reorganize these two equations we get

pX(s)

pZ(s)
≥ 1− pY (s)

uX − pY (s)uY

uZ

pX(s+ δ)

pZ(s+ δ)
≤ 1− pY (s+ δ)

uX − pY (s+ δ)uY

uZ

As optimality also requires that uX ≥ uY ≥ uZ , we know that pX(s + δ) < pZ(s + δ).
Thus,

pX(s+ δ)

pZ(s+ δ)
≥ min{pX(s), pZ(s)}

max{pX(s), pZ(s)}
=

pX(s)

pZ(s)

On the other hand, 1−pY (s)
uX−pY (s)uY

is decreasing in s, which leads to contradiction.

Scenario 2 The optimality implies that

pX(s)uX + (1− pX(s))pY (s)uY + (1− pX(s))(1− pY (s))pZ(s)uZ ≥
pY (s)uY + (1− pY (s))pZ(s)uZ + (1− pY (s))(1− pZ(s))pW (s)uW

and

pX(s+ δ)uX + (1− pX(s+ δ))pY (s+ δ)uY + (1− pX(s+ δ))(1− pY (s+ δ))pZ(s+ δ)uZ ≤
pY (s+ δ)uY + (1− pY (s+ δ))pZ(s+ δ)uZ + (1− pY (s+ δ))(1− pZ(s+ δ))pW (s+ δ)uW

Reorganizing these two equations in a similar way we get

pX(s)

pW (s)
≥ (1− pY (s))(1− pZ(s))

uX − uY + (1− pY (s))(uY − pZ(s)uZ)
uW

and

pX(s+ δ)

pW (s+ δ)
≤ (1− pY (s+ δ))(1− pZ(s+ δ))

uX − uY + (1− pY (s+ δ))(uY − pZ(s+ δ)uZ)
uW

As uX > uY > uZ > uW , we have pX(s+ δ) < pW (s+ δ). THus,

81



pX(s+ δ)

pW (s+ δ)
>

min{pX(s), pW (s)}
max{pX(s), pW (s)}

=
pX(s)

pW (s)

On the other hand, we have

(1− pY (s))(1− pZ(s))

uX − uY + (1− pY (s))(uY − pZ(s)uZ)
=

1
uX−uY

(1−pY (s))(1−pZ(s))
+ uY −pZ(s)uZ

1−pZ(s)

where the first term of the denominator is positive and increasing in s, and the second
term is also increasing in s per derivation in Scenario 1. Thus (1−pY (s))(1−pZ(s))

uX−uY +(1−pY (s))(uY −pZ(s)uZ)
is

decreasing in s, which leads to contradiction.

Scenario 3 Similar to the manipulation above, we obtain

pX(s)

pM(s)
≥ (1− pY (s))(1− pZ(s))(1− pW (s))

uX − uY + (1− pY (s))[uY − uZ + (1− pZ(s))(uZ − pW (s)uW )]
uM

and

pX(s+ δ)

pM(s+ δ)
≤ (1− pY (s+ δ))(1− pZ(s+ δ))(1− pW (s+ δ))

uX − uY + (1− pY (s+ δ))[uY − uZ + (1− pZ(s+ δ))(uZ − pW (s+ δ)uW )]
uM

Since

(1− pY (s))(1− pZ(s))(1− pW (s))

uX − uY + (1− pY (s))[uY − uZ + (1− pZ(s))(uZ − pW (s)uW )]
=

1
uX−uY

(1−pY (s))(1−pZ(s))(1−pW (s)
+ uY −uZ+(1−pZ(s+δ))(uZ−pW (s+δ)uW )

(1−pZ(s))(1−pW (s))

where the first term of denominator is increasing in s, and the second term is as well per
derivation in Scenario 2. Thus (1−pY (s))(1−pZ(s))(1−pW (s))

uX−uY +(1−pY (s))[uY −uZ+(1−pZ(s))(uZ−pW (s)uW )]
uM is decreasing s,

which leads to contraction.

Proposition 4 If Assumption 1, 2, 3 hold, and R(u,A, s) ≥ 1, then for any s and δ > 0,
R(u,A, s) ≥ R(u,A, s+ δ) or R(u,A, s+ δ) = 0.

Proof. It suffices to show that 1 ≤ R(u,A, s+ δ) < R(u,A, s) would lead to contradiction.
Namely, it is impossible that college A is selected and appears at a lower position when
priority score is lower. Below we show that this would lead to contradiction in every possible
scenario.
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Scenario 1 There exists a college Y such that R(u, Y, s) = 4 and R(u, Y, s+ δ) = 3
To prove by contradiction, suppose the optimal list is (X, Y, V,W ) when priority score is

s and the optimal list is (Y, Z,M,N) when priority score is s + δ, where M , N , V , W are
just other colleges that could be identical or different. Let U(M,N)(s) and U(V,W )(s) denote
the expected utility of sub-portfolio (M,N), (V,W ) when priority score is s respectively.

X and Z cannot be the same college, which leads to contradiction immediately. The
optimality implies that

pX(s)uX + (1− pX(s))pY (s)uY + (1− pX(s))(1− pY (s))U(M,N) ≥
pY (s)uY + (1− pY (s))pZ(s)uZ + (1− pY (s))(1− pZ(s))U(M,N)

Similarly,

pX(s+ δ)uX + (1− pX(s+ δ))pY (s+ δ)uY + (1− pX(s+ δ))(1− pY (s+ δ))U(V,W ) ≥
pY (s+ δ)uY + (1− pY (s+ δ))pZ(s+ δ)uZ + (1− pY (s+ δ))(1− pZ(s+ δ))U(V,W )

Reorganizing these two inequalities, we have

pX(s)

pZ(s)
≥

(1− pY (s))uZ − (1− pY (s))U(M,N)(s)

uX − pY (s)uY − (1− pY (s))U(M,N)(s)

and

pX(s+ δ)

pZ(s+ δ)
≤

(1− pY (s+ δ))uZ − (1− pY (s+ δ))U(V,W )(s+ δ)

uX − pY (s+ δ)uY − (1− pY (s+ δ))U(V,W )(s+ δ)

The optimality implies that uX > uY > uZ . This in turn implies that pX(s) < pZ(s),
because otherwise it is never optimal to list (Y, Z) as top two choices. When V ̸= Z and
W ̸= Z, U(V,W ) cannot be larger than U(M,N), because this would imply that (V,W ) is a
better sub-portfolio than (M,N) when priority score is s. Thus,

pX(s)

pZ(s)
<

pX(s+ δ)

pZ(s+ δ)

However, we have

(1− pY (s+ δ))uZ − (1− pY (s+ δ))U(V,W )(s+ δ)

uX − pY (s+ δ)uY − (1− pY (s+ δ))U(V,W )(s+ δ)

≤
(1− pY (s+ δ))uZ − (1− pY (s+ δ))U(M,N)(s+ δ)

uX − pY (s+ δ)uY − (1− pY (s+ δ))U(M,N)(s+ δ)

<
(1− pY (s+ δ))(uZ − U(M,N)(s))

uX − pY (s+ δ)uY − (1− pY (s+ δ))U(M,N)(s)

<
(1− pY (s))(uZ − U(M,N)(s))

ux − pY (s)uy − (1− pY (s))U(M,N)(s)
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which leads to contradiction.
When V = Z, the list is (X, Y, Z,W ) when priority score is s and (Y, Z,M,N) when

priority score is s+δ. The optimality condition thus implies that (X, Y, Z,W ) ≻ (Y, Z,M,W )
when priority score is s, (Y, Z,M,N) ≻ (X, Y, Z,N) when priority score is s + δ. In this
case let UN(s), UW (s) denote the expected utility of N and W when priority score is s
respectively. We have UW (s) ≤ UN(s) < uM , as otherwise n would be suboptimal when
score is s. From the preference ordering above (after similar algebraic manipulations) we
have,

pX(s)

pM(s)
≥ (1− pY (s))(1− pZ(s))(uM − UW (s))

uX − uY + (1− pY (s))[uY − pZ(s)uZ − (1− pz(s))UW (s)]

and

pX(s+ δ)

pM(s+ δ)
≤ (1− pY (s+ δ))(1− pZ(s+ δ))(uM − UN(s+ δ))

uX − uY + (1− pY (s+ δ))[uY − pZ(s+ δ)uZ − (1− pz(s+ δ))UN(s+ δ)]

Since uX > uY > uZ > max{uW , uM , uN}, we have pX(s) < pM(s). Thus pX(s+δ)
pM (s+δ)

> pX(s)
pM (s)

.
Also the expression on the right is decreasing in U , thus

(1− pY (s))(1− pZ(s))(uM − UW (s))

uX − uY + (1− pY (s))[uY − pZ(s)uZ − (1− pz(s))UW (s)]

≥ (1− pY (s))(1− pZ(s))(uM − UN(s+ δ))

uX − uY + (1− pY (s))[uY − pZ(s)uZ − (1− pz(s))UN(s+ δ)]

≥ (1− pY (s+ δ))(1− pZ(s+ δ))(uM − UN(s+ δ))

uX − uY + (1− pY (s+ δ))[uY − pZ(s+ δ)uZ − (1− pz(s+ δ))UN(s+ δ)]

which leads to contradiction.
When W = Z, the list is (X, Y, V, Z) when priority score is s, and (Y, Z,M,N) when

priority score is s+ δ. Optimality implies that (V, Z) ≻ (Z,M) when priority score is s, and
(Z,M,N) ≻ (V, Z,N) when priority score is s + δ. Mathematically, the latter is equivalent
to

pZ(s+ δ)uZ + (1− pZ(s+ δ))pM(s+ δ)uM + (1− pZ(s+ δ))(1− pM(s+ δ))pN(s+ δ)uN ≥
pV (s+ δ)uV + (1− pV (s+ δ))pZ(s+ δ)uZ + (1− pV (s+ δ))(1− pZ(s+ δ))pN(s+ δ)uN

Since optimality also implies uX > uY > uV > uZ > uM > uN , it implies that pM(s+δ) >
pV (s+ δ). Thus (Z,M,N) ≻ (V, Z,N) implies that

pZ(s+ δ)uZ + (1− pZ(s+ δ))pM(s+ δ)uM ≥ pV (s+ δ)uV + (1− pV (s+ δ))pZ(s+ δ)uZ

which is equivalent to (z,m) ≻ (v, z). As Proposition 3 has proved, this choice pattern
cannot be generated by the rational type.
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Proof of Scenario 1 concludes.

Scenario 2 There exists a college Y such that R(u, Y, s) = 2 R(u, Y, s+ δ) = 3 and
In other words, a rational type chooses (V,X, Y,W ) when priority score is s, chooses

(M,Y, Z,N) when priority score is s + δ. When W ̸= Z, the analysis of this case becomes
essentially the same as Scenario 1.

When W = Z, M ≥ X because the choice pattern otherwise has been proved to be
impossible in Proposition 3. Thus the scenario implies that (X, Y, Z) ≻ (Y, Z,N) when
priority score is s, but (Y, Z,N) ≻ (X, Y, Z) when priority score is s + δ, an impossible
pattern again according to Proposition 3.

Proof of Scenario 2 concludes.

Scenario 3 There exists a college Y such that R(u, Y, s) = 1 and R(u, Y, s+ δ) = 2 and
In other words, a rational type chooses (V,W,X, Y ) when priority score is s, (M,N, Y, Z)

when priority score is s + δ. If M ̸= X and N ≥ X, the optimality condition requires that
(X, Y ) ≻ (Y, Z) when score is s, but (Y, Z) ≻ (X, Y ) when score is s + δ, which according
to Proposition 3 are impossible to hold at the same time.

If N = X, M ̸= W because of proposition 3. Consequently, (W,X, Y ) ≻ (X, Y, Z) when
score is s, (X, Y, Z) ≻ (W,X, Y ) when score is s+ δ, again impossible thanks to Proposition
3.

IfM = X, a rational type chooses (V,W,X, Y ) when priority score is s, (X,N, Y, Z) when
priority score is s+ δ. The optimality requires that when score is s, (W,X, Y ) ≻ (X,N, Y ),
which is equivalent to

pW (s)uW + (1− pW (s))pX(s)uX + (1− pW (s))(1− pX(s))pY (s)uY >

pX(s)uX + (1− pX(s))pN(s)uN + (1− pX(s))(1− pN(s))pY (s)uY

The optimality also implies that uV > uW > uX > uN > uY > uZ , and consequently
max{pV , pW} < min{pX , pY , pN , pZ}. As a result, we can infer that (1−pW (s)) > (1−pN(s)),
and consequently (W,X, Y, Z) ≻ (X,N, Y, Z) when score is s.

Together with (X,N, Y, Z) ≻ (W,X, Y, Z) when score is s+ δ, this scenario can be dealt
with using the derivation in Scenario 1.

Proof of Scenario 3 concludes.

Scenario 4 There exists college Y such that R(u, Y, s) = 2 and R(u, Y, s+ δ) = 4.
In other words, the optimal list is (X, V, Y,W ) when score is s, (Y,M,Z,N) when score is

s+ δ. The optimality condition implies that uX > uV > uY > uM > uZ > uN and uY > uW ,
max{pX , pW} < min{pY , pM , pZ , pN}.

When score is s+ δ, we have (Y,M,Z,N) ≻ (V, Y, Z,N). Mathematically,

pY (s+ δ)uY + (1− pY (s+ δ))pM(s+ δ)uM + (1− pY (s+ δ))(1− pM(s+ δ))EU [(Z,N)] >

pV (s+ δ)uV + (1− pV )(s+ δ)pY (s+ δ)uY + (1− pV (s+ δ))(1− pY (s+ δ))EU [(Z,N)]
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where EU [(Z,N)] ≡= pZ(s+ δ)uZ + (1− pZ(s+ δ))pN(s+ δ)uN .
If W ̸= M , the optimality condition when score is s+δ implies that (Z,N) ≻ (W ), which

is equivalent to EU [(Z,N)] > EU [(W )] ≡ pW (s+ δ)uW . As (1− pM) < (1− pV ), we have

pY (s+ δ)uY + (1− pY (s+ δ))pM(s+ δ)uM + (1− pY (s+ δ))(1− pM(s+ δ))EU [(W )] >

pV (s+ δ)uV + (1− pV (s+ δ))pY (s+ δ)uY + (1− pV (s+ δ))(1− pY (s+ δ))EU [(W )]

which implies (Y,M,W ) ≻ (V, Y,W ) when score is s+δ. On the other hand, (V, Y,W ) ≻
(Y,M,W ) when is score s. As shown in Scenario 1, this is impossible.

If W = M , the optimal list is (X, V, Y,W ) when score is s, (Y,W,Z,N) when score is
s + δ. In this case all the other colleges have to be different from each other: uX > uV >
uY > uW > uZ > uN . This in turn implies that max{pX , pV } < min{pY , pZ , pN , pW}. The
optimality condition when score is s implies that (V, Y,W ) ≻ (Y, Z,N). The optimality
condition when score is s+ δ implies that (Y,W,Z,N) ≻ (V, Y,W,N). Mathematically:

EU [(Y,W,Z)] + (1− pY (s+ δ))(1− pW (s+ δ))(1− pZ(s+ δ))pN(s+ δ)uN ≥
EU [(V, Y,W )] + (1− pV (s+ δ))(1− pY (s+ δ))(1− pW (s+ δ))pN(s+ δ)uN

where EU [(Y,W,Z)] ≡ pY (s+ δ)uY + (1− pY (s+ δ))pW (s+ δ)uW + (1− pY (s+ δ))(1−
pW (s + δ))pZ(s + δ)uZ , EU [(V, Y,W )] ≡ pV (s + δ)uV + (1 − pV (s + δ))pY (s + δ)uY + (1 −
pV (s + δ))(1 − pY (s + δ))pW (s + δ)uW As (1 − pZ(s + δ)) < (1 − pV (s + δ)), we have
EU [(Y,W,Z)] > EU [(V, Y,W )], which implies that (Y,W,Z) ≻ (V, Y,W ) when score is
s+ δ. Impossible according to Proposition 2.

Proof of Scenario 4 concludes.

Scenario 5 There exists a college Y such that R(u, Y, s) = 1 and R(u, Y, s+ δ) = 3
In other words, the optimal list is (X, V,W, Y ) when score is s, (M,Y, Z,N) when score is

s+δ. The optimality condition requires that uX > uV > uW > uY > uZ > uN and uM > uY .
This in turn implies that max{pX , pV , pW} < min{pM , pY , pZ , pN}. If all the letters here
denote different colleges, the optimality condition implies that (Y, Z,N) ≻ (W,Y,N) when
score is s+ δ. As (1− pZ) < (1− pW ), we have (Y, Z) ≻ (W,Y ) when score is s+ δ. When
score is s, however, we have (W,Y ) ≻ (Y, Z), which is impossible according to Proposition
3.

If some letters denote the same college, the only possibility is that M could be X, V
or W . If M = X or M = V , the same derivation can be applied as well. If M = W , the
optimal list is (W,Y, Z,N) when score is s, and (X, V,W, Y ) when score is s′, which appears
to be the same Scenario 4.

Proof of Scenario 5 concludes.

Scenario 6 There exists college Y such that R(u,A, s) = 1 and R(u, Y, s+ δ) = 4.
In other words, the optimal list is (Y,M,N,L) when score is s + δ, (W,V,X, Y ) when

score is s. The optimality condition implies that uW > uV > uX > uY > uM > uN > uL,
and max{pW , pV , pX} < min{pM , pN , pL, pY }. As (W,V,X, Y ) is the optimal list when score
is s, (X, Y ) ≻ (Y,M) when score is s.
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Moreover, as the optimality list is (Y,M,N,L) when score is s+δ. We have (Y,M,N,L) ≻
(X, Y,N, L) when score is s+ δ. Mathematically this is equivalent to

pY (s+ δ)uY + (1− pY (s+ δ))pM(s+ δ)uM + (1− pY (s+ δ))(1− pM(s+ δ))EU [(N,L)] ≥
pX(s+ δ)uX + (1− pX(s+ δ))pY (s+ δ)uY + (1− pX(s+ δ))(1− pY (s+ δ))EU [(N,L)]

where EU [(N,L)] ≡ pN(s + δ)uN + (1 − pN(s + δ))pL(s + δ)uL As (1 − pM(s + δ)) <
(1− pX(s+ δ)), we have

pY (s+ δ)uY + (1− pY (s+ δ))pM(s+ δ)uM ≥ pX(s+ δ)uX + (1− pX(s+ δ))pY (s+ δ)uY

which is equivalent to (Y,M) ≻ (X, Y ). This pattern has been proved to be impossible
in Proposition 2.

Proof of Scenario 6 concludes.

Proposition 5 Under Assumption 1, 2, 3, for any preference profile u, college A, CRN
(u,A,κ) ≡

{s|R(u,A, s) = κ} is connected if κ ≥ 1.

Proof.

Scenario 1 κ = 4
It suffices to show that if college X is listed in a specific position when priority score is

s̄ and s, then it is the best candidate for that position as well for any s such that s < s < s̄.
Mathematically

For any college Y ̸= X, we have

pY (s̄)uY + (1− pY (s̄))U(s̄) ≤ pX(s̄)uX + (1− pX(s̄))U(s̄)

pY (s)uY + (1− pY (s))U(s) ≤ pX(s)uX + (1− pX(s))U(s)

where U(s) represent the utility of the list of colleges chosen below the current position
when priority score is s. Since s < s < s̄, we have U(s) ≥ U(s) ≥ U(s̄). Importantly, note
that this holds because X cannot be any of the non-top choices (1 ≤ R(u,X, s) < 4) when
s ∈ [s, s̄] thanks to Proposition 3.

The two equations above are equivalent to

pX(s̄)

pY (s̄)
≥ uY − U(s̄)

uX − U(s̄)

pX(s)

pY (s)
≥ uY − U(s)

uX − U(s)

Next we show that it is true that
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pX(s)

pY (s)
≥ uY − U(s)

uX − U(s)

We analyze whether X is a better choice when probability is pX(s), case by case.
Case (I): pX > pY , uX < uY . In this case we have

pX(s)

pY (s)
≥ pX(s̄)

pY (s̄)
≥ uY − U(s̄)

uX − U(s̄)
≥ uY − U(s)

uX − U(s)

Case (II): pX < pY , uX > uY . In this case we have

pX(s)

pY (s)
≥ pX(s)

pY (s)
≥ uY − U(s)

uX − U(s)
≥ uY − U(s)

uX − U(s)

Case (III): pX > pY , uX > uY , obviously X is better regardless of probability.
Case (IV): pX < pY , uX < uY , Y must be chosen regardless of probability, which leads

to contradiction.
Proof of Scenario 1 concludes.

Scenario 2 κ ≤ 3
The proof of Scenario 1 can be largely recycled, with the only complication being whether

X could be in a position whereR(u,X, s) > κ. This is again impossible thanks to Proposition
3.

Remark Proposition 3 and 4 together imply Theorem 1.

Proposition 6 Suppose Assumption 1, 2, 3 hold, and that the tie of expected utility among
listed colleges is limited to at most two colleges. For any u and A, if there exists s < s̄
such that D(u,A, s) = 0 and D(u,A, s̄) = κ ≥ 2, then there exists s < s < s̄ such that
1 ≤ D(u,A, s) ≤ κ− 1.

Proof. Let fA(s) = pA(s)uA. fA(s) is continuous for any college A. Thus for any pairs of A,
X, function ∆AX(s) ≡ fA(s)−fX(s) is continuous. Under the assumptions, ∆AX(s) switches
signs at most once. If pA(s) > pX(s), it can possibly switch from positive to negative; it
pX(s) > pA(s), it can possibly switch from negative to positive.

Define s4 ≡ sups{s|D(u,A, s) = 0}. According to the continuity we know that there
exists college B such that ∆AB(s4) = 0. This college must be listed at the fourth place, and
∆AB(s4) is switching from negative to positive, because otherwise given the assumptions A
will not be moved in the neighborhood of s4. Thus D(u,A, s) = 1 in the neighborhood of s4.

If κ = 3, the key is to consider s2 ≡ sups{s|D(u,A, s) > 1}. We can infer using the same
method that when s is in the neighborhood of s2, D(u,A, s) = 2.

If κ = 4, the key is to consider s3 ≡ sups{s|D(u,A, s) > 2}. We can infer using the same
method that when s is in the neighborhood of s3, D(u,A, s) = 3.
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Remark Proposition 6 implies Theorem 2.

Proposition 7 In the setting as detailed in Section 7.1, we have:

• For Rational Decision Rule:

1. When δ > 2, the optimal list is (B1, B2) if pA
pB

< 1−pB
δ−2pB

; the optimal list is (A1, B1)

if 1−pB
δ−2pB

< pA
pB

< 2
δ
; the optimal list is (A1, A2) if pA

pB
> 2

δ
.

2. When 1 < δ < 2, the optimal list is (B1, B2) if pA
pB

< 1
δ
; the optimal list is

(B1, A1) if pA
pB

> 1
δ
.

3. When δ < 1, the optimal list is (B1, B2).

• For the DC Decision Rule:

1. When δ > 2, the optimal list is (B1, B2) if pA
pB

< 1
δ
; (B1, A1) if 1

δ
< pA

pB
< 2

δ
;

(A1, A2) if pA
pB

> 2
δ
;

2. When 1 < δ < 2, the optimal list is (B1, B2) if pA
pB

< 1
δ
; (B1, A1) if pA

pB
> 1

δ
;

3. When δ < 1, the optimal list is (B1, B2).

Proof. The expected utility of (A1, A2) is

(2pA − p2A)δ

The expected utility of (A1, B1) is

pAδ + 2(1− pA)pB

The expected utility of (B1, B2) is
3pB − p2B

Thus we have,

(A1, B1) ≻ (B1, B2) ⇐⇒ pA
pB

>
1−B

δ − 2pB

(A1, A2) ≻ (A1, B1) ⇐⇒ pA
pB

>
2

δ

(A1, A2) ≻ (B1, B2) ⇐⇒ pA
pB

>
3− PB

2− PA

1

δ

(B1, A1) ≻ (B1, B2) ⇐⇒ pA
pB

>
1

δ

Remark Proposition 7 provides the intermediate results for Theorem 1.
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E Additional Institutional Details

E.1 College Application

The admission process is stratified according to college quality. Before 2019, the colleges were
classified into three tiers of decreasing quality: elite (first-tier), public non-elite (second-tier)
and private non-elite (third-tier). The latter two categories merged starting in 2019, but
the elite category remains unchanged. In this paper, we focus on the admission to elite
colleges, which are argued to play a central role in upward mobility in China because of the
tremendous value placed on education and the huge return in labor markets (Jia and Li,
2016).

The share of students who are eligible for 1st-tier colleges is roughly 20 ∼ 25% of the
exam takers. The eligible students on the science track can choose up to four colleges from
among 239 elite colleges. For those who are on the humanities track, the total number of elite
colleges is 150. Science track students account for more than 80% of the first-tier applicants.

E.2 Priority Score

The priority score is almost completely determined by the College Entrance Exam (CEE)33.
The CEE is a nationwide closed-book written exam held once a year on June 7th and 8th,
with the rare exception that the exam was postponed to July 7th and 8th in 2020 due to
COVID-19. To apply for colleges in an admission cycle, all students must take the CEE
of the same cycle. In each province, students on the same track (Humanities or Sciences)
will take the same exam.34 As demonstrated in Figure A1, it will take up to two weeks
for Ningxia Provincial Education Authorities to grade students’ exams. Students will be
notified of their exam score and ranking in Ningxia around the 20th-25th of the month in
which the exam takes place.

Exams for both tracks include Chinese, Mathematics35 and English. For each of these
subjects, students get an integer score, with the maximum (best) possible being 150 and the
minimum being 0. Additionally, students on the Humanities Track take a comprehensive
exam on history, politics, and geography, whereas students on the Sciences Track take another
exam on physics, chemistry, and biology. This track-specific exam accounts for 300 points.
Thus the total score of the CEE (sum of the scores from the four subjects) is 750 points.
In case of a tie in total score, ranking will be determined by the score in the comprehensive
exam in the respective track, Mathematics, and English, in a lexicographic way.

E.3 Correlation in Admission Events

If the probability of meeting the cutoff of one college is correlated with meeting that of
another, our assumptions about independence are defied. In this case, assuming indepen-

33Exceptions include winners of international Olympiad contests, students who win sports scholarships,
students with exceptional art talent, students who belong to certain minority ethnic groups, etc. These
exceptions are also quantified and added to priority scores on top of the exam scores, and are observable in
our data.

34See Wang et al. (2021) and Li et al. (2021) for more institutional details about the CEE.
35Mathematics for the Humanities Track differs from that for the Science Track.
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dence of admission probability alone may result in suboptimal portfolio choices (Shorrer,
2019; Rees-Jones et al., 2020). However, in our case students know their priority score and
ranking by the time of application, and researchers have assumed independence in similar
settings (Larroucau and Rios, 2018, 2020).

Nevertheless, to test the potential presence of pairwise correlation, we conduct an empir-
ical test with the same specification as we used in Section 3.2 on the administrative dataset.
The difference is that, in this new empirical exercise, the dependent variable is students’
second choices, and the regression is run on those who were not admitted by their first
choice:

1(Admitted to Second Choices)i = α2 + β2p̂ij

If the admission to the first choices does not correlate with the admission probability of
the second choices, we would expect α2 = 0 and β2 = 1, which is the null hypothesis of this
exercise.

The estimation results suggest that our estimates of admission probability remain accu-
rate conditional on the rejection of the first choices, suggesting that in our setting pairwise
correlation does not significantly alter admission probability. As shown in Columns 3 and 4
of Table B2, α̂2 = 0.0183 (SE=0.0037) and −0.0002 (SE=0.0062) for the science and human-
ity tracks, respectively, whereas β̂2 = 0.9805 (SE=0.0060) and 1.0033 (SE=0.0.0110) for the
science and humanity tracks, respectively. While the null hypothesis is rejected for science
track, the deviation from null is quantitatively small.

E.4 College Preferences vs. Major Preferences

Major preference does not affect assignment of college; essentially the Chinese system is
a “college-then-major” system (Chen and Kesten, 2017; Calsamiglia et al., 2020). Major
studies typically begin in the second year of bachelor education, and since the 2010s, the
Ministry of Education (MoE) of PRC has successfully pushed for a lower barrier in major
switching 36. To assess whether major concerns affect risk taking, we asked students which
factor they were most concerned about in college applications. We report the relevant
statistical analysis in Table B10. In Columns 1 and 2, we regress the dummy indicating
whether students consider major to be their top concern on a normalized SES index. Only
13.7% of the survey takers consider major to be their top concern, and the share is slightly
lower among the advantaged students.

Consideration of major could affect students’ strategy if students think ahead, and want
to outcompete their peers who are admitted to the same college in terms of academic ability.
To examine its quantitative impact on risk-taking, we regress the estimated unconditional
probability of the first choices (Columns 3-4) and beliefs about being admitted to the first
choices (Columns 5-6) on those who consider major to be of top concern. As expected,
students tend to be more cautious if they consider major to be of top concern, but its
quantitative impact on the probability of first choices is less than 10% compared to those
who do not regard major as their top consideration. We calibrate its impact on the full

36The link here is an example. Since this campaign by the MoE, major distinctions have become more
coarse and less of a concern to students.

91

http://www.moe.gov.cn/jyb_xwfb/s5989/s6635/s8537/zl_cxgxrc/201506/t20150611_189967.html


sample average of first choice probabilities by calculating the product of the average impact
due to major concerns and the share of students who consider major to be important.
Reassuringly, it contributes at most a 1.2% increase in the mean unconditional probability
of the first choices.
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