Bringing Electricity to Rural Households in India and Kenya

Principal Investigators:

Eric Brewer (EECS) Ted Miguel (Economics) Catherine Wolfram (Haas)

Two countries and two technologies

Kenya: subsidized grid connections

Major economic and policy questions

- What are the main barriers to getting electricity service to more people?
- In what ways does electricity service influence a household's well-being?
- What are the environmental impacts (local and global) of different electricity connection technologies? Of an electricity connection relative to the alternative?

Connectivity challenges in India

- Approximately 30% of the households in India live without access to electricity
- Those with grid connections get very cheap, and often free, electricity
 - Subsidies to electricity sector equal two percent of Indian GDP
- Electricity is unreliable, grid build-out is slow

Smart microgrids in India

Objectives

- Build out smart microgrids in 40 villages in Uttar Pradesh and Rajasthan
 - Villages randomly selected from at least 80 eligible villages, currently without an electricity connection
 - Surveys at treatment and control villages
- 2. Evaluate household-level impact of electricity
- 3. Offer rebates on energy efficient and inefficient appliances
 - Rebates vary randomly

Connectivity vs. "Access to electricity" in Kenya

• "Access to Electricity" based on REA press releases

"Connectivity" based on KPLC Annual Reports (e.g. residential customers * 2009 average household size / population)

Kenyan grid connection study

Objectives

- 1. Offer unconnected households close to randomly selected transformers subsidies of different levels to connect to the grid
 - Current costs are ~\$400, about half of average annual income
 - REA is offering 50% discount, financed over 10 years
- 2. Study drivers of subsidy take-up, like discount rates, neighbors
- 3. Evaluate household-level impact of grid electricity
 - Couple with careful measurement, and potentially, enhancement of reliability

Open Data Kit survey device

Preliminary survey results

• West Kajulu • Kibos • Central Kisumu • East Kisumu • Kisian Kisumu • • Central Kolwa • Milimani • Orongo[•] Buoye

> © 2013 Google © 2013 Cnes/Spot Image Image © 2013 TerraMetrics Image © 2013 DigitalGlobe

Google earth

Google earth

© 2013 Google

Image © 2013 DigitalGlobe

© 2013 Google

Image © 2013 DigitalGlobe

Microgrid Innovations

- Usage-based payment
 - Need ultra low-cost metering (and shut off)
 - Need pre-paid approach
- Higher-quality power
 - Grid has low-quality power
 - Bad for LED lighting, cell phones
 - Grid is unavailable
 - Solution: small battery in the house
- Also exploring DC instead of AC

Multi-house meter

Hourly electricity usage (Kenya)

Mezuri: Data Platform

- Goal: high-quality data for pilots and RCTs
 - ODK for surveys
 - Real-time updates, geo-coding
 - Fine-grain sensor data
 - Microgrid meter data
 - Data is in the "cloud"
 - Visualization tools such as maps
 - Access control
 - Tools for data processing
 - Provenance for data
 - How was this data calculated/acquired